Chapter 11: Problem 4
In this problem we show that pointwise convergence of a sequence \(S_{n}(x)\) does not imply mean convergence, and conversely. (a) Let \(S_{n}(x)=n \sqrt{x} e^{-n x^{2} / 2}, 0 \leq x \leq 1 .\) Show that \(S_{n}(x) \rightarrow 0\) as \(n \rightarrow \infty\) for each \(x\) in \(0 \leq x \leq 1 .\) Show also that $$ R_{n}=\int_{0}^{1}\left[0-S_{n}(x)\right]^{2} d x=\frac{n}{2}\left(1-e^{-n}\right) $$ and hence that \(R_{n} \rightarrow \infty\) as \(n \rightarrow \infty .\) Thus pointwise convergence does not imply mean convergence. (b) Let \(S_{n}(x)=x^{n}\) for \(0 \leq x \leq 1\) and let \(f(x)=0\) for \(0 \leq x \leq 1 .\) Show that $$ R_{n}=\int_{0}^{1}\left[f(x)-S_{n}(x)\right]^{2} d x=\frac{1}{2 n+1} $$ and hence \(S_{n}(x)\) converges to \(f(x)\) in the mean. Also show that \(S_{n}(x)\) does not converge to \(f(x)\) pointwise throughout \(0 \leq x \leq 1 .\) Thus mean convergence does not imply pointwise convergence.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.