Chapter 11: Problem 3
Consider the problem $$ -\left(x y^{\prime}\right)^{\prime}+\left(k^{2} / x\right) y=\lambda x y $$ $$ y, y^{\prime} \text { bounded as } x \rightarrow 0, \quad y(1)=0 $$ where \(k\) is a positive integer. (a) Using the substitution \(t=\sqrt{\lambda} x,\) show that the given differential equation reduces to Bessel's equation of order \(k\) (see Problem 9 of Section 5.8 ). One solution is \(J_{k}(t) ;\) a second linearly independent solution, denoted by \(Y_{k}(t),\) is unbounded as \(t \rightarrow 0\). (b) Show formally that the eigenvalues \(\lambda_{1}, \lambda_{2}, \ldots\) of the given problem are the squares of the positive zeros of \(J_{k}(\sqrt{\lambda}),\) and that the corresponding eigenfunctions are \(\phi_{n}(x)=\) \(J_{k}(\sqrt{\lambda_{n}} x) .\) It is possible to show that there is an infinite sequence of such zeros. (c) Show that the eigenfunctions \(\phi_{n}(x)\) satisfy the orthogonality relation $$ \int_{0}^{1} x \phi_{m}(x) \phi_{n}(x) d x=0, \quad m \neq n $$ (d) Determine the coefficients in the formal series expansion $$ f(x)=\sum_{n=1}^{\infty} a_{n} \phi_{n}(x) $$ (e) Find a formal solution of the nonhomogeneous problem $$ -(x y)^{\prime}+\left(k^{2} / x\right) y=\mu x y+f(x) $$ $$ y, y^{\prime} \text { bounded as } x \rightarrow 0, \quad y(1)=0 $$ where \(f\) is a given continuous function on \(0 \leq x \leq 1,\) and \(\mu\) is not an cigenvalue of the corresponding homogeneous problem.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.