Chapter 11: Problem 28
Indicate a way of solving nonhomogeneous boundary value problems that is analogous to using the inverse matrix for a system of linear algebraic equations. The Green's function plays a part similar to the inverse of the matrix of coefficients. This method leads to solutions expressed as definite integrals rather than as infinite series. Except in Problem 35 we will assume that \(\mu=0\) for simplicity. (a) Show by the method of variation of parameters that the general solution of the differential equation $$ -y^{\prime \prime}=f(x) $$ can be written in the form $$ y=\phi(x)=c_{1}+c_{2} x-\int_{0}^{x}(x-s) f(s) d s $$ where \(c_{1}\) and \(c_{2}\) are arbitrary constants. (b) Let \(y=\phi(x)\) also be required to satisfy the boundary conditions \(y(0)=0, y(1)=0\) Show that in this case $$ c_{1}=0, \quad c_{2}=\int_{0}^{1}(1-s) f(s) d s $$ (c) Show that, under the conditions of parts (a) and (b), \(\phi(x)\) can be written in the form $$ \phi(x)=\int_{0}^{x} s(1-x) f(s) d s+\int_{x}^{1} x(1-s) f(s) d s $$ (d) Defining $$ G(x, s)=\left\\{\begin{array}{ll}{s(1-x),} & {0 \leq s \leq x} \\ {x(1-s),} & {x \leq s \leq 1}\end{array}\right. $$ show that the solution takes the form $$ \phi(x)=\int_{0}^{1} G(x, s) f(s) d s $$ The function \(G(x, s)\) appearing under the integral sign is a Green's function. The usefulness of a Green's function solution rests on the fact that the Green's function is independent of the nonhomogencous term in the differential equation. Thus, once the Green's function is determined, the solution of the boundary value problem for any nonhomogeneous term \(f(x)\) is obtained by a single integration. Note further that no determination of arbitrary constants is required, since \(\phi(x)\) as given by the Green's function integral formula automatically satisfies the boundary conditions.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.