Chapter 11: Problem 24
In this problem we consider a higher order eigenvalue problem. In the study of transverse vibrations of a uniform elastic bar one is led to the differential equation $$ y^{\mathrm{w}}-\lambda y=0 $$ $$ \begin{array}{l}{\text { where } y \text { is the transverse displacement and } \lambda=m \omega^{2} / E I ; m \text { is the mass per unit length of }} \\\ {\text { the rod, } E \text { is Young's modulus, } I \text { is the moment of inertia of the cross section about an }} \\ {\text { axis through the centroid perpendicular to the plane of vibration, and } \omega \text { is the frequency of }} \\ {\text { vibration. Thus for a bar whose material and geometric properties are given, the eigenvalues }} \\ {\text { determine the natural frequencies of vibration. Boundary conditions at each end are usually }} \\ {\text { one of the following types: }}\end{array} $$ $$ \begin{aligned} y=y^{\prime} &=0, \quad \text { clamped end } \\ y=y^{\prime \prime} &=0, \quad \text { simply supported or hinged end, } \\ y^{\prime \prime}=y^{\prime \prime \prime} &=0, \quad \text { free end } \end{aligned} $$ $$ \begin{array}{l}{\text { For each of the following three cases find the form of the eigenfunctions and the equation }} \\ {\text { satisfied by the eigenvalues of this fourth order boundary value problem. Determine } \lambda_{1} \text { and }} \\ {\lambda_{2}, \text { the two eigenvalues of smallest magnitude. Assume that the eigenvalues are real and }} \\ {\text { positive. }}\end{array} $$ $$ \begin{array}{ll}{\text { (a) } y(0)=y^{\prime \prime}(0)=0,} & {y(L)=y^{\prime \prime}(L)=0} \\ {\text { (b) } y(0)=y^{\prime \prime}(0)=0,} & {y(L)=y^{\prime \prime}(L)=0} \\ {\text { (c) } y(0)=y^{\prime}(0)=0,} & {y^{\prime \prime}(L)=y^{\prime \prime \prime}(L)=0 \quad \text { (cantilevered bar) }}\end{array} $$
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.