Chapter 11: Problem 23
Consider the problem $$ y^{\prime \prime}+\lambda y=0, \quad y(0)=0, \quad y^{\prime}(L)=0 $$ $$ \begin{array}{l}{\text { Show that if } \phi_{\infty} \text { and } \phi_{n} \text { are eigenfunctions, corresponding to the eigenvalues } \lambda_{m} \text { and } \lambda_{n},} \\ {\text { respectively, with } \lambda_{m} \neq \lambda_{n} \text { , then }}\end{array} $$ $$ \int_{0}^{L} \phi_{m}(x) \phi_{n}(x) d x=0 $$ $$ \text { Hint. Note that } $$ $$ \phi_{m}^{\prime \prime}+\lambda_{m} \phi_{m}=0, \quad \phi_{n}^{\prime \prime}+\lambda_{n} \phi_{n}=0 $$ $$ \begin{array}{l}{\text { Multiply the first of these equations by } \phi_{n}, \text { the second by } \phi_{m}, \text { and integrate from } 0 \text { to } L,} \\ {\text { using integration by parts. Finally, subtract one equation from the other. }}\end{array} $$
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.