Chapter 11: Problem 21
Consider the problem $$ y^{\prime \prime}+\lambda y=0, \quad 2 y(0)+y^{\prime}(0)=0, \quad y(1)=0 $$ $$ \begin{array}{l}{\text { (a) Find the determinantal equation satisfied by the positive eigenvalues. Show that }} \\ {\text { there is an infinite sequence of such eigervalues. Find } \lambda_{1} \text { and } \lambda_{2} \text { . Then show that } \lambda_{n} \cong} \\ {[(2 n+1) \pi / 2]^{2} \text { for large } n .}\end{array} $$ $$ \begin{array}{l}{\text { (b) Find the determinantal equation satisfied by the negative eigenvalues. Show that there }} \\ {\text { is exactly one negative eigenvalue and find its value. }}\end{array} $$
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.