Chapter 11: Problem 20
In this problem we outline a proof of the first part of Theorem 11.2 .3 : that the eigenvalues of the Sturm-Liouville problem ( 1 ), (2) are simple. For a given \(\lambda\) suppose that \(\phi_{1}\) and \(\phi_{2}\) are two linearly independent eigenfunctions. Compute the Wronskian \(W\left(\phi_{1}, \phi_{2}\right)(x)\) and use the boundary conditions ( 2) to show that \(W\left(\phi_{1}, \phi_{2}\right)(0)=0 .\) Then use Theorems 3.3 .2 and 3.3 .3 to conclude that \(\phi_{1}\) and \(\phi_{2}\) cannot be linearly independent as assumed.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.