Chapter 11: Problem 2
Consider the boundary value problem $$ -\left(x y^{\prime}\right)^{\prime}=\lambda x y $$ \(y, y^{\prime}\) bounded as \(x \rightarrow 0, \quad y^{\prime}(1)=0\) (a) Show that \(\lambda_{0}=0\) is an eigenvalue of this problem corresponding to the eigenfunction \(\phi_{0}(x)=1 .\) If \(\lambda>0,\) show formally that the eigenfunctions are given by \(\phi_{n}(x)=\) \(J_{0}(\sqrt{\lambda_{n}} x),\) where \(\sqrt{\lambda_{n}}\) is the \(n\) th positive root (in increasing order) of the equation \(J_{0}^{\prime}(\sqrt{\lambda})=0 .\) It is possible to show that there is an infinite sequence of such roots. (b) Show that if \(m, n=0,1,2, \ldots,\) then $$ \int_{0}^{1} x \phi_{m}(x) \phi_{n}(x) d x=0, \quad m \neq n $$ (c) Find a formal solution to the nonhomogeneous problem $$ \begin{aligned}-\left(x y^{\prime}\right)^{\prime} &=\mu x y+f(x) \\ y, y^{\prime} \text { bounded as } x \rightarrow 0, & y^{\prime}(1)=0 \end{aligned} $$ where \(f\) is a given continuous function on \(0 \leq x \leq 1,\) and \(\mu\) is not an eigenvalue of the corresponding homogeneous problem.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.