Chapter 11: Problem 17
Consider the problem $$ y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0, \quad y(0)=a, \quad y(1)=b $$ Let \(y=u+v,\) where \(v\) is any twice differentiable function satisfying the boundary conditions (but not necessarily the differential equation). Show that \(u\) is a solution of the problem $$ u^{\prime \prime}+p(x) u^{\prime}+q(x) u=g(x), \quad u(0)=0, \quad u(1)=0 $$ where \(g(x)=-\left[v^{\prime \prime}+p(x) v^{\prime}+q(x) v\right],\) and is known once \(v\) is chosen. Thus nonhomogeneities can be transferred from the boundary conditions to the differential equation. Find a function \(v\) for this problem.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.