Consider Legendre's equation (see Problems 22 through 24 of Section 5.3 )
$$
-\left[\left(1-x^{2}\right) y^{\prime}\right]=\lambda y
$$
subject to the boundary conditions
$$
y(0)=0, \quad y, y^{\prime} \text { bounded as } x \rightarrow 1
$$
The eigenfunctions of this problem are the odd I egendre polynomials
\(\phi_{1}(x)=P_{1}(x)=x\) \(\phi_{2}(x)=P_{3}(x)=\left(5 x^{3}-3 x\right) / 2,
\ldots \phi_{n}(x)=P_{2 n-1}(x), \ldots\) corresponding to the eigenvalues
\(\lambda_{1}=2, \lambda_{2}=4 \cdot 3, \ldots, \lambda_{n}=2 n(2 n-1), \ldots
.\)
(a) Show that
$$
\int_{0}^{1} \phi_{m}(x) \phi_{n}(x) d x=0, \quad m \neq n
$$
(b) Find a formal solution of the nonhomogeneous problem
$$
-\left[\left(1-x^{2}\right) y^{\prime}\right]=\mu y+f(x)
$$
$$
y(0)=0, \quad y, y^{\prime} \text { bounded as } x \rightarrow 1
$$
where \(f\) is a given continuous function on \(0 \leq x \leq 1,\) and \(\mu\) is
not an cigenvalue of the corresponding homogeneous problem,