Chapter 11: Problem 15
Let \(L\) be a second order linear differential operator. Show that the solution \(y=\phi(x)\) of the problem $$ \begin{array}{c}{L[y]=f(x)} \\ {a_{1} y(0)+a_{2} y^{\prime}(0)=\alpha, \quad b_{1} y(1)+b_{2} y^{\prime}(1)=\beta}\end{array} $$ can be written as \(y=u+v,\) where \(u=\phi_{1}(x)\) and \(v=\phi_{2}(x)\) are solutions of the problems $$ \begin{aligned} L[u]=0 & \\ a_{1} u(0)+a_{2} u^{\prime}(0)=\alpha, & b_{1} u(1)+b_{2} u^{\prime}(1)=\beta \end{aligned} $$ and $$ \begin{aligned} L_{L}[v] &=f(x) \\ a_{1} v(0)+a_{2} v^{\prime}(0) &=0, \quad b_{1} v(1)+b_{2} v^{\prime}(1)=0 \end{aligned} $$ respectively.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.