Consider the problem
$$
y^{\prime \prime}+\lambda y=0, \quad \alpha y(0)+y^{\prime}(0)=0, \quad y(1)=0
$$
$$
\begin{array}{l}{\text { where } \alpha \text { is a given constant. }} \\\
{\text { (a) Show that for all values of } \alpha \text { there is an infinite
sequence of positive eigenvalues. }} \\ {\text { (b) If } \alpha<1, \text {
show that all (real) eigenvalues are positive. Show the smallest eigenvalue }}
\\\ {\text { approaches zero as } \alpha \text { approaches } 1 \text { from
below. }} \\ {\text { (c) Show that } \lambda=0 \text { is an eigenvalue only
if } \alpha=1} \\ {\text { (d) If } \alpha>1 \text { , show that there is
exactly one negative eigenvalue and that this eigenvalue }} \\ {\text {
decreases as } \alpha \text { increases. }}\end{array}
$$