Chapter 11: Problem 10
Determine whether there is any value of the constant \(a\) for which the problem has a solution. Find the solution for each such value. $$ y^{\prime \prime}+\pi^{2} y=a+x, \quad y(0)=0, \quad y(1)=0 $$
Chapter 11: Problem 10
Determine whether there is any value of the constant \(a\) for which the problem has a solution. Find the solution for each such value. $$ y^{\prime \prime}+\pi^{2} y=a+x, \quad y(0)=0, \quad y(1)=0 $$
All the tools & learning materials you need for study success - in one app.
Get started for freeThe wave equation in polar coordinates is $$ u_{r r}+(1 / r) u_{r}+\left(1 / r^{2}\right) u_{\theta \theta}=a^{-2} u_{t t} $$ Show that if \(u(r, \theta, t)=R(r) \Theta(\theta) T(t),\) then \(R, \Theta,\) and \(T\) satisfy the ordinary differential equations $$ \begin{aligned} r^{2} R^{\prime \prime}+r R^{\prime}+\left(\lambda^{2} r^{2}-n^{2}\right) R &=0 \\ \Theta^{\prime \prime}+n^{2} \Theta &=0 \\\ T^{\prime \prime}+\lambda^{2} a^{2} T &=0 \end{aligned} $$
Use the method indicated in Problem 23 to solve the given boundary value problem. $$ \begin{array}{l}{u_{t}=u_{x x}-2} \\ {u(0, t)=1, \quad u(1, t)=0} \\ {u(x, 0)=x^{2}-2 x+2}\end{array} $$
State whether the given boundary value problem is homogeneous or non homogeneous. $$ y^{\prime \prime}+4 y=\sin x, \quad y(0)=0, \quad y(1)=0 $$
Consider the problem $$ y^{\prime \prime}+\lambda y=0, \quad 2 y(0)+y^{\prime}(0)=0, \quad y(1)=0 $$ $$ \begin{array}{l}{\text { (a) Find the determinantal equation satisfied by the positive eigenvalues. Show that }} \\ {\text { there is an infinite sequence of such eigervalues. Find } \lambda_{1} \text { and } \lambda_{2} \text { . Then show that } \lambda_{n} \cong} \\ {[(2 n+1) \pi / 2]^{2} \text { for large } n .}\end{array} $$ $$ \begin{array}{l}{\text { (b) Find the determinantal equation satisfied by the negative eigenvalues. Show that there }} \\ {\text { is exactly one negative eigenvalue and find its value. }}\end{array} $$
Find a formal solution of the nonhomogencous boundary value problem $$ -\left(x y^{\prime}\right)^{\prime}=\mu x y+f(x) $$ \(y, y^{\prime}\) bounded as \(x \rightarrow 0, \quad y(1)=0\) where \(f\) is a given continuous function on \(0 \leq x \leq 1,\) and \(\mu\) is not an eigenvalue of the corresponding homogeneous problem. Hint: Use a series expansion similar to those in Section \(11.3 .\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.