Chapter 10: Problem 5
Determine whether the method of separation of variables can be used to replace the given partial differential equation by a pair of ordinary differential equations. If so, find the equations. $$ u_{x x}+(x+y) u_{y y}=0 $$
Chapter 10: Problem 5
Determine whether the method of separation of variables can be used to replace the given partial differential equation by a pair of ordinary differential equations. If so, find the equations. $$ u_{x x}+(x+y) u_{y y}=0 $$
All the tools & learning materials you need for study success - in one app.
Get started for freeThe heat conduction equation in two space dimensions is $$ \alpha^{2}\left(u_{x x}+u_{y y}\right)=u_{t} $$ Assuming that \(u(x, y, t)=X(x) Y(y) T(t),\) find ordinary differential equations satisfied by \(X(x), Y(y),\) and \(T(t) .\)
Find the required Fourier series for the given function and sketch the graph of the function to which the series converges over three periods. $$ \begin{array}{l}{f(x)=L-x, \quad 0 \leq x \leq L ; \quad \text { cosine series, period } 2 L} \\ {\text { Compare with Example } 1 \text { of Section } 10.2 .}\end{array} $$
Show how to find the solution \(u(x, y)\) of Laplace's equation in the rectangle
\(0
If an elastic string is free at one end, the boundary condition to be satisfied there is that \(u_{x}=0 .\) Find the displactement \(u(x, t)\) in an elastic string of length \(L\), fixed at \(x=0\) and freeat \(x=L,\) set th motion with no initial velocity from the initiol position \(u(x, 0)=f(x)\) Where \(f\) is a given function. withno intitial velocity from the initiolposition \(u(x, 0)=f(x),\) Hint: Show that insiamental solutions for this problem, satisfying all conditions except the nonomongent condition, are $$ u_{n}(x, t)=\sin \lambda_{n} x \cos \lambda_{n} a t $$ where \(\lambda_{n}=(2 n-1) \pi / 2 L, n=1,2, \ldots\) Compare this problem with Problem 15 of Section \(10.6 ;\) pay particular attention to the extension of the initial data out of the original interval \([0, L] .\)
In each of Problems 19 through 24 : (a) Sketch the graph of the given function for three periods. (b) Find the Fourier series for the given function. (c) Plot \(s_{m}(x)\) versus \(x\) for \(m=5,10\), and 20 . (d) Describe how the Fourier series seems to be converging. $$ f(x)=x, \quad-1 \leq x < 1 ; \quad f(x+2)=f(x) $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.