Chapter 10: Problem 38
More Specialized Fourier Scries. Let \(f\) be a function originally defined on \(0 \leq x \leq L\). In this section we have shown that it is possible to represent \(f\) either by a sine series or by a cosine series by constructing odd or even periodic extensions of \(f,\) respectively. Problems 38 through 40 concern some other more specialized Fourier series that converge to the given function \(f\) on \((0, L) .\) $$ \begin{array}{l}{\text { Let } f \text { be extended into }(L, 2 L] \text { in an arbitrary manner. Then extend the resulting function }} \\ {\text { into }(-2 L, 0) \text { as an odd function and elsewhere as a periodic function of period } 4 L \text { (see }} \\ { \text { Figure }10.4 .6) . \text { Show that this function has a Fourier sine series in terms of the functions }} \\\ {\sin (n \pi x / 2 L), n=1,2,3, \ldots . \text { that is, }}\end{array} $$ $$ f(x)=\sum_{n=1}^{\infty} b_{n} \sin (n \pi x / 2 L) $$ where $$ b_{n}=\frac{1}{L} \int_{0}^{2 L} f(x) \sin (n \pi x / 2 L) d x $$ $$ \text { This series converges to the original function on }(0, L) $$ (Figure cant copy)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.