Chapter 10: Problem 3
Determine whether the given function is periodic. If so, find its fundamental period. $$ \sinh 2 x $$
Chapter 10: Problem 3
Determine whether the given function is periodic. If so, find its fundamental period. $$ \sinh 2 x $$
All the tools & learning materials you need for study success - in one app.
Get started for freeAssume that \(f\) has a Fourier sine series $$ f(x)=\sum_{n=1}^{\infty} b_{n} \sin (n \pi x / L), \quad 0 \leq x \leq L $$ (a) Show formally that $$ \frac{2}{L} \int_{0}^{L}[f(x)]^{2} d x=\sum_{n=1}^{\infty} b_{n}^{2} $$ This relation was discovered by Euler about \(1735 .\)
The total energy \(E(t)\) of the vibrating string is given as a function of time by $$ E(t)=\int_{0}^{L}\left[\frac{1}{2} \rho u_{t}^{2}(x, t)+\frac{1}{2} T u_{x}^{2}(x, t)\right] d x ; $$ the first term is the kinetic energy due to the motion of the string, and the second term is the potential energy created by the displacement of the string away from its equilibrium position. For the displacement \(u(x, t)\) given by Eq. \((20),\) that is, for the solution of the string problem with zero initial velocity, show that $$ E(t)=\frac{\pi^{2} T}{4 L} \sum_{n=1}^{\infty} n^{2} c_{n}^{2} $$ Note that the right side of Eq. (ii) does not depend on \(t .\) Thus the total energy \(E\) is a constant, and therefore is conserved during the motion of the string. Hint: Use Parseval's equation (Problem 37 of Section 10.4 and Problem 17 of Section \(10.3)\), and recall that \(a^{2}=T / \rho .\)
(a) Find the solution \(u(x, y)\) of Laplace's equation in the rectangle \(0
find the steady-state solution of the heat conduction equation \(\alpha^{2} u_{x x}=u_{t}\) that satisfies the given set of boundary conditions. $$ u(0, t)=10, \quad u(50, t)=40 $$
find the steady-state solution of the heat conduction equation \(\alpha^{2} u_{x x}=u_{t}\) that satisfies the given set of boundary conditions. $$ u_{x}(0, t)=0, \quad u(I, t)=0 $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.