Chapter 10: Problem 29
A function is given on an interval \(0
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.
Chapter 10: Problem 29
A function is given on an interval \(0
These are the key concepts you need to understand to accurately answer the question.
All the tools & learning materials you need for study success - in one app.
Get started for freeassume that the given function is periodically extended outside the original interval. (a) Find the Fourier series for the given function. (b) Let \(e_{n}(x)=f(x)-s_{n}(x)\). Find the least upper bound or the maximum value (if it exists) of \(\left|e_{n}(x)\right|\) for \(n=10,20\), and 40 . (c) If possible, find the smallest \(n\) for which \(\left|e_{x}(x)\right| \leq 0.01\) for all \(x .\) $$ f(x)=\left\\{\begin{array}{ll}{x,} & {-\pi \leq x<0,} \\ {0,} & {0 \leq x<\pi ;}\end{array} \quad f(x+2 \pi)=f(x)\right. $$
Let a metallic rod \(20 \mathrm{cm}\) long be heated to a uniform temperature of \(100^{\circ} \mathrm{C}\). Suppose that at \(t=0\) the ends of the bar are plunged into an ice bath at \(0^{\circ} \mathrm{C},\) and thereafter maintained at this temperature, but that no heat is allowed to escape through the lateral surface. Find an expression for the temperature at any point in the bar at any later time. Determine the temperature at the center of the bar at time \(t=30 \mathrm{scc}\) if the bar is made of (a) silver, (b) aluminum, or (c) cast iron.
The motion of a circular elastic membrane, such as a drumhead, is governed by the two-dimensional wave equation in polar coordinates $$ u_{r r}+(1 / r) u_{r}+\left(1 / r^{2}\right) u_{\theta \theta}=a^{-2} u_{t t} $$ Assuming that \(u(r, \theta, t)=R(r) \Theta(\theta) T(t),\) find ordinary differential equations satisfied by \(R(r), \Theta(\theta),\) and \(T(t) .\)
find the steady-state solution of the heat conduction equation \(\alpha^{2} u_{x x}=u_{t}\) that satisfies the given set of boundary conditions. $$ u(0, t)=0, \quad u_{x}(L, t)=0 $$
Consider the conduction of heat in a rod \(40 \mathrm{cm}\) in length whose ends
are maintained at \(0^{\circ} \mathrm{C}\) for all \(t>0 .\) In each of Problems 9
through 12 find an expression for the temperature \(u(x, t)\) if the initial
temperature distribution in the rod is the given function. Suppose that
\(\alpha^{2}=1\)
$$
u(x, 0)=50, \quad 0
What do you think about this solution?
We value your feedback to improve our textbook solutions.