Chapter 10: Problem 27
Suppose that \(g\) is an integrable periodic function with period \(T\) (a) If \(0 \leq a \leq T,\) show that $$\int_{0}^{T} g(x) d x=\int_{a}^{a+T} g(x) d x$$ Hint: Show first that \(\int_{0}^{a} g(x) d x=\int_{T}^{a+T} g(x) d x .\) Consider the change of variable \(s=\) \(x-T\) in the second integral. (b) Show that for any value of \(a,\) not necessarily in \(0 \leq a \leq T\) $$\int_{0}^{T} g(x) d x=\int_{a}^{a+T} g(x) d x$$ (c) Show that for any values of \(a\) and \(b\), $$\int_{a}^{a+T} g(x) d x=\int_{b}^{b+T} g(x) d x$$
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.