Chapter 10: Problem 27
In each of Problems 27 through 30 a function is given on an interval \(0
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.
Chapter 10: Problem 27
In each of Problems 27 through 30 a function is given on an interval \(0
These are the key concepts you need to understand to accurately answer the question.
All the tools & learning materials you need for study success - in one app.
Get started for freeIn each of Problems 19 through 24 : (a) Sketch the graph of the given function for three periods. (b) Find the Fourier series for the given function. (c) Plot \(s_{m}(x)\) versus \(x\) for \(m=5,10\), and 20 . (d) Describe how the Fourier series seems to be converging. $$ f(x)=x, \quad-1 \leq x < 1 ; \quad f(x+2)=f(x) $$
If an elastic string is free at one end, the boundary condition to be satisfied there is that \(u_{x}=0 .\) Find the displactement \(u(x, t)\) in an elastic string of length \(L\), fixed at \(x=0\) and freeat \(x=L,\) set th motion with no initial velocity from the initiol position \(u(x, 0)=f(x)\) Where \(f\) is a given function. withno intitial velocity from the initiolposition \(u(x, 0)=f(x),\) Hint: Show that insiamental solutions for this problem, satisfying all conditions except the nonomongent condition, are $$ u_{n}(x, t)=\sin \lambda_{n} x \cos \lambda_{n} a t $$ where \(\lambda_{n}=(2 n-1) \pi / 2 L, n=1,2, \ldots\) Compare this problem with Problem 15 of Section \(10.6 ;\) pay particular attention to the extension of the initial data out of the original interval \([0, L] .\)
Suppose that \(g\) is an integrable periodic function with period \(T\) (a) If \(0 \leq a \leq T,\) show that $$\int_{0}^{T} g(x) d x=\int_{a}^{a+T} g(x) d x$$ Hint: Show first that \(\int_{0}^{a} g(x) d x=\int_{T}^{a+T} g(x) d x .\) Consider the change of variable \(s=\) \(x-T\) in the second integral. (b) Show that for any value of \(a,\) not necessarily in \(0 \leq a \leq T\) $$\int_{0}^{T} g(x) d x=\int_{a}^{a+T} g(x) d x$$ (c) Show that for any values of \(a\) and \(b\), $$\int_{a}^{a+T} g(x) d x=\int_{b}^{b+T} g(x) d x$$
Find the required Fourier series for the given function and sketch the graph
of the function to which the series converges over three periods.
$$
f(x)=1, \quad 0
Determine whether the method of separation of variables can be used to replace the given partial differential equation by a pair of ordinary differential equations. If so, find the equations. $$ u_{x x}+(x+y) u_{y y}=0 $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.