Chapter 10: Problem 2
Determine whether the method of separation of variables can be used to replace the given partial differential equation by a pair of ordinary differential equations. If so, find the equations. $$ t u_{x x}+x u_{t}=0 $$
Chapter 10: Problem 2
Determine whether the method of separation of variables can be used to replace the given partial differential equation by a pair of ordinary differential equations. If so, find the equations. $$ t u_{x x}+x u_{t}=0 $$
All the tools & learning materials you need for study success - in one app.
Get started for freefind the steady-state solution of the heat conduction equation \(\alpha^{2} u_{x x}=u_{t}\) that satisfies the given set of boundary conditions. $$ u(0, t)=10, \quad u(50, t)=40 $$
(a) Find the required Fourier series for the given function. (b) Sketch the
graph of the function to which the series converges for three periods. (c)
Plot one or more partial sums of the series.
$$
f(x)=2-x^{2}, \quad 0
find the steady-state solution of the heat conduction equation \(\alpha^{2} u_{x x}=u_{t}\) that satisfies the given set of boundary conditions. $$ u(0, t)=T, \quad u_{x}(L, t)=0 $$
In each of Problems 15 through 22 find the required Fourier series for the
given function and
sketch the graph of the function to which the series converges over three
periods.
$$
\begin{array}{l}{f(x)=\left\\{\begin{array}{ll}{1,} & {0
(a) Let the ends of a copper rod \(100 \mathrm{cm}\) long be maintained at \(0^{\circ} \mathrm{C}\). Suppose that the center of the bar is heated to \(100^{\circ} \mathrm{C}\) by an external heat source and that this situation is maintained until a steady-state results. Find this steady-state temperature distribution. (b) At a time \(t=0\) Lafter the steady-state of part (a) has been reached let the heat source be removed. At the same instant let the end \(x=0\) be placed in thermal contact with a reservoir at \(20^{\circ} \mathrm{C}\) while the other end remains at \(0^{\circ} \mathrm{C}\). Find the temperature as a function of position and time. (c) Plot \(u\) versus \(x\) for several values of \(t\). Also plot \(u\) versus \(t\) for screral values of \(x\). (d) What limiting value does the temperature at the center of the rod approach after a long time? How much time must elapse before the center of the rod cools to within I degree of its limiting value?
What do you think about this solution?
We value your feedback to improve our textbook solutions.