Chapter 10: Problem 15
Consider a uniform bar of length \(L\) having an initial temperature distribution given by \(f(x), 0 \leq x \leq L\). Assume that the temperature at the end \(x=0\) is held at \(0^{\circ} \mathrm{C},\) while the end \(x=L\) is insulated so that no heat passes through it. (a) Show that the fundamental solutions of the partial differential equation and boundary conditions are $$ u_{n}(x, t)=e^{-(2 n-1)^{2} \pi^{2} \alpha^{2} t / 4 L^{2}} \sin [(2 n-1) \pi x / 2 L], \quad n=1,2,3, \ldots $$ (b) Find a formal series expansion for the temperature \(u(x, t)\) $$ u(x, t)=\sum_{n=1}^{\infty} c_{n} u_{n}(x, t) $$ that also satisfies the initial condition \(u(x, 0)=f(x)\) Hint: Even though the fundamental solutions involve only the odd sines, it is still possible to represent \(f\) by a Fourier series involving only these functions. See Problem 39 of Section \(10.4 .\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.