Chapter 10: Problem 15
By writing Laplace's equation in cylindrical coordinates \(r, \theta,\) and \(z\) and then assuming that the solution is axially symmetric (no dependence on \(\theta),\) we obtain the equation $$ u_{r r}+(1 / r) u_{r}+u_{z z}=0 $$ Assuming that \(u(r, z)=R(r) Z(z),\) show that \(R\) and \(Z\) satisfy the equations $$ r R^{n}+R^{\prime}+\lambda^{2} r R=0, \quad Z^{\prime \prime}-\lambda^{2} Z=0 $$ The equation for \(R\) is Bessel's equation of order zero with independent variable \(\lambda\).
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.