Chapter 10: Problem 11
If \(f(x)=L-x\) for \(0 < x < 2 L,\) and if \(f(x+2 L)=f(x),\) find a formula for \(f(x)\) in the interval \(-L < x < 0 .\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.
Periodicity in Functions
The period of a function is the smallest positive value for which the function's pattern repeats. For example, in the exercise, we are given that the function defined by \(f(x)=L-x\) for \(0 < x < 2L\) repeats itself every \(2L\) units. This means that \(f(x+2L)\) must be equal to \(f(x)\), defining the function's periodic nature. In essence, no matter how far you travel along the x-axis, if you move a distance of \(2L\), you will encounter the same function value.
Understanding the periodicity is critical when expanding the function across different intervals. In the step-by-step solution, when asked to find \(f(x)\) for \(-L < x < 0\), recognizing that the function's period is \(2L\) allows us to confidently assert that the function should behave identically in this alternate range, albeit with some necessary transformations.
Transformations of Functions
Let's explore some common function dances, shall we?
- Translation: Think of it as a slide—moving a function up, down, left, or right. In our exercise, the function \(f(x)=L-x\) had to be translated to make sense in the interval \(-L, 0\).
- Reflection: This is akin to looking in a mirror. The function can be flipped over an axis. If we had \(f(x)=-x\), reflecting it over the y-axis would give us \(f(x)=x\).
- Stretching or Compression: This modifies how 'tall' or 'wide' our function is. If you multiply the function by a number greater than 1, it stretches; if you multiply it by a number between 0 and 1, it compresses.
In the provided exercise, by setting \(x=-L+y\), we perform a translation that moves the initially defined function into our target interval. This smart shift is needed to establish the function in the negative domain and helps us appreciate how transformations can unveil new expressions for the same periodic function in different intervals.
Piecewise-Defined Function
A piecewise-defined function is like a mathematical chameleon, changing its rule of operation depending on the 'environment' (which, in this case, is the interval of x-values). In the exercise, we see the hint of a piecewise-defined function where \(f(x)=L-x\) within the interval \(0 < x < 2L\), but the problem asks what happens for \(-L < x < 0\).
Utilizing the concept of periodicity and transformations, we've deduced a new piece of the function's rule. We end up with a two-part function:
- For \(0 < x < 2L\), we use \(f(x)=L-x\).
- And we've determined for \(-L < x < 0\), the function should be defined as \(f(x)=x-L\).
This is a simplified representation, but it illustrates the core of what piecewise functions are about. They piece together different behaviors to create a function that can effectively handle a diverse set of conditions.