Chapter 10: Problem 1
(a) Find the solution \(u(x, y)\) of Laplace's equation in the rectangle \(0
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.
Chapter 10: Problem 1
(a) Find the solution \(u(x, y)\) of Laplace's equation in the rectangle \(0
These are the key concepts you need to understand to accurately answer the question.
All the tools & learning materials you need for study success - in one app.
Get started for freeThe heat conduction equation in two space dimensions may be expressed in terms of polar coordinates as $$ \alpha^{2}\left[u_{r r}+(1 / r) u_{r}+\left(1 / r^{2}\right) u_{\theta \theta}\right]=u_{t} $$ Assuming that \(u(r, \theta, t)=R(r) \Theta(\theta) T(t),\) find ordinary differential equations satisfied by \(R(r), \Theta(\theta),\) and \(T(t) .\)
In each of Problems 19 through 24 : (a) Sketch the graph of the given function for three periods. (b) Find the Fourier series for the given function. (c) Plot \(s_{m}(x)\) versus \(x\) for \(m=5,10\), and 20 . (d) Describe how the Fourier series seems to be converging. $$ f(x)=x^{2} / 2, \quad-2 \leq x \leq 2 ; \quad f(x+4)=f(x) $$
find the steady-state solution of the heat conduction equation \(\alpha^{2} u_{x x}=u_{t}\) that satisfies the given set of boundary conditions. $$ u(0, t)=T, \quad u_{x}(L, t)=0 $$
(a) Find the required Fourier series for the given function. (b) Sketch the
graph of the function to which the series converges for three periods. (c)
Plot one or more partial sums of the series.
$$
f(x)=2-x^{2}, \quad 0
In this problem we indicate certain similarities between three dimensional geometric vectors and Fourier series. (a) Let \(\mathbf{v}_{1}, \mathbf{v}_{2},\) and \(\mathbf{v}_{3}\) be a set of mutually orthogonal vectors in three dimensions and let \(\mathbf{u}\) be any three-dimensional vector. Show that $$\mathbf{u}=a_{1} \mathbf{v}_{1}+a_{2} \mathbf{v}_{2}+a_{3} \mathbf{v}_{3}$$ where $$a_{i}=\frac{\mathbf{u} \cdot \mathbf{v}_{i}}{\mathbf{v}_{i} \cdot \mathbf{v}_{i}}, \quad i=1,2,3$$ Show that \(a_{i}\) can be interpreted as the projection of \(\mathbf{u}\) in the direction of \(\mathbf{v}_{i}\) divided by the length of \(\mathbf{v}_{i}\). (b) Define the inner product \((u, v)\) by $$(u, v)=\int_{-L}^{L} u(x) v(x) d x$$ Also let $$\begin{array}{ll}{\phi_{x}(x)=\cos (n \pi x / L),} & {n=0,1,2, \ldots} \\ {\psi_{n}(x)=\sin (n \pi x / L),} & {n=1,2, \ldots}\end{array}$$ Show that Eq. ( 10 ) can be written in the form $$\left(f, \phi_{n}\right)=\frac{a_{0}}{2}\left(\phi_{0}, \phi_{n}\right)+\sum_{m=1}^{\infty} a_{m}\left(\phi_{m}, \phi_{n}\right)+\sum_{m=1}^{\infty} b_{m}\left(\psi_{m}, \phi_{m}\right)$$ (c) Use Eq. (v) and the corresponding equation for \(\left(f, \psi_{n}\right)\) together with the orthogonality relations to show that $$a_{n}=\frac{\left(f, \phi_{n}\right)}{\left(\phi_{n}, \phi_{n}\right)}, \quad n=0,1,2, \ldots ; \quad b_{n}=\frac{\left(f, \psi_{n}\right)}{\left(\psi_{n}, \psi_{n}\right)}, \quad n=1,2, \ldots$$ Note the resemblance between Eqs. (vi) and Eq. (ii). The functions \(\phi_{x}\) and \(\psi_{x}\) play a role for functions similar to that of the orthogonal vectors \(v_{1}, v_{2},\) and \(v_{3}\) in three-dimensional
What do you think about this solution?
We value your feedback to improve our textbook solutions.