Chapter 1: Problem 15
In each of Problems 15 through 18 determine the values of \(r\) for which the given differential equation has solutions of the form \(y=e^{t} .\) $$ y^{\prime}+2 y=0 $$
Chapter 1: Problem 15
In each of Problems 15 through 18 determine the values of \(r\) for which the given differential equation has solutions of the form \(y=e^{t} .\) $$ y^{\prime}+2 y=0 $$
All the tools & learning materials you need for study success - in one app.
Get started for freeThe field mouse population in Example 1 satisfies the differential equation $$ d p / d t=0.5 p-450 \text { . } $$ (a) Find the time at which the population becomes extinct if \(p(0)=850\). (b) Find the time of extinction if \(p(0)=p_{0}\), where \(0
draw a direction field for the given differential equation. Based on the direction field, determine the behavior of \(y\) as \(t \rightarrow \infty\). If this behavior depends on the initial value of \(y\) at \(t=0,\) describe this dependency. Note the right sides of these equations depend on \(t\) as well as \(y\), therefore their solutions can exhibit more complicated behavior than those in the text. $$ y^{\prime}=2 t-1-y^{2} $$
Verify that the given function or functions is a solution of the given partial differential equation. $$ \alpha^{2} u_{x x}=u_{t} ; \quad u=(\pi / t)^{1 / 2} e^{-x^{2} / 4 a^{2} t}, \quad t>0 $$
draw a direction field for the given differential equation. Based on the direction field, determine the behavior of \(y\) as \(t \rightarrow \infty\). If this behavior depends on the initial value of \(y\) at \(t=0,\) describe this dependency. Note the right sides of these equations depend on \(t\) as well as \(y\), therefore their solutions can exhibit more complicated behavior than those in the text. $$ y^{\prime}=e^{-t}+y $$
Verify that the given function or functions is a solution of the differential equation. $$ t^{2} y^{\prime \prime}+5 t y^{\prime}+4 y=0, \quad t>0 ; \quad y_{1}(t)=t^{-2}, \quad y_{2}(t)=t^{-2} \ln t $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.