Chapter 11: Q8SE (page 805)
Show that every tree is bipartite.
Short Answer
Therefore, every tree is bipartite is the true statement.
Chapter 11: Q8SE (page 805)
Show that every tree is bipartite.
Therefore, every tree is bipartite is the true statement.
All the tools & learning materials you need for study success - in one app.
Get started for freeShow that a directed graph \({\bf{G = }}\left( {{\bf{V,E}}} \right)\) has an arborescence rooted at the vertex r if and only if for every vertex \({\bf{v}} \in {\bf{V}}\), there is a directed path from r to v.
The eccentricity of a vertex in an unrooted tree is the length of the longest simple path beginning at this vertex. A vertex is called a center if no vertex in the tree has smaller eccentricity than this vertex. In Exercises \({\bf{39--41}}\) find every vertex that is a center in the given tree.
41.
Sollin's algorithm produces a minimum spanning tree from a connected weighted simple graph \({\bf{G = (V,E)}}\) by successively adding groups of edges. Suppose that the vertices in \({\bf{V}}\) are ordered. This produces an ordering of the edges where \({\bf{\{ }}{{\bf{u}}_{\bf{0}}}{\bf{,}}{{\bf{v}}_{\bf{0}}}{\bf{\} }}\) precedes \({\bf{\{ }}{{\bf{u}}_{\bf{1}}}{\bf{,}}{{\bf{v}}_{\bf{1}}}{\bf{\} }}\) if \({{\bf{u}}_{\bf{0}}}\) precedes \({{\bf{u}}_{\bf{1}}}\) or if \({{\bf{u}}_{\bf{0}}}{\bf{ = }}{{\bf{u}}_{\bf{1}}}\) and \({{\bf{v}}_{\bf{0}}}\) precedes \({{\bf{v}}_{\bf{1}}}\). The algorithm begins by simultaneously choosing the edge of least weight incident to each vertex. The first edge in the ordering is taken in the case of ties. This produces a graph with no simple circuits, that is, a forest of trees (Exercise \({\bf{24}}\) asks for a proof of this fact). Next, simultaneously choose for each tree in the forest the shortest edge between a vertex in this tree and a vertex in a different tree. Again the first edge in the ordering is chosen in the case of ties. (This produces a graph with no simple circuits containing fewer trees than were present before this step; see Exercise \({\bf{24}}\).) Continue the process of simultaneously adding edges connecting trees until \({\bf{n - 1}}\) edges have been chosen. At this stage a minimum spanning tree has been constructed.
Show that the addition of edges at each stage of Sollinโs algorithm produces a forest.
Draw \({{\bf{B}}_{\bf{k}}}\) for \({\bf{k = 0,1,2,3,4}}\).
Show that a center should be chosen as the root to producea rooted tree of minimal height from an unrooted tree.
What do you think about this solution?
We value your feedback to improve our textbook solutions.