Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Show that every tree can be colored using two colors. The rooted Fibonacci trees \({\bf{Tn}}\) are defined recursively in the following way. \({\bf{T1}}\)and\({\bf{T}}2\) are both the rooted tree consisting of a single vertex, and for \({\bf{n = 3, 4,}}...{\bf{,}}\) the rooted tree \({\bf{Tn}}\) is constructed from a root with \({\bf{Tn - }}1\) as its left subtree and \({\bf{Tn - 2}}\) as its right subtree.

Short Answer

Expert verified

Color the root of the tree Blue. Next, color all vertices at level 1 Red, all vertices at level 2 Blue, all vertices at level 3 red, and so on.

Step by step solution

01

Definition

A tree is an undirected graph that is connected and that does not contain any simple circuits.

The level of a vertex is the length of the path from the root to the vertex.

02

Assuming color to the trees

To prove: Every tree can be colored using two colors.

Let us use the two colors Red and Blue. Color the root of the tree Blue. Next, color all vertices at level 1 Red, all vertices at level 2 Blue, all vertices at level 3 Red, and so on.

Since a vertex v at level h can only be directly connected to a vertex at level h-1 or at level h+1, the vertex v always has a different color than the vertices it is connected to (as they are in the previous and the following level).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Draw the subtree of the tree in Exercise \({\bf{3}}\) that is rooted at

\({\bf{a) a}}{\bf{.}}\)

\({\bf{b) c}}{\bf{.}}\)

\({\bf{c) e}}{\bf{.}}\)

Express Sollinโ€™s algorithm in pseudo code.

Sollin's algorithm produces a minimum spanning tree from a connected weighted simple graph \({\bf{G = (V,E)}}\) by successively adding groups of edges. Suppose that the vertices in \({\bf{V}}\) are ordered. This produces an ordering of the edges where \({\bf{\{ }}{{\bf{u}}_{\bf{0}}}{\bf{,}}{{\bf{v}}_{\bf{0}}}{\bf{\} }}\) precedes \({\bf{\{ }}{{\bf{u}}_{\bf{1}}}{\bf{,}}{{\bf{v}}_{\bf{1}}}{\bf{\} }}\) if \({{\bf{u}}_{\bf{0}}}\) precedes \({{\bf{u}}_{\bf{1}}}\) or if \({{\bf{u}}_{\bf{0}}}{\bf{ = }}{{\bf{u}}_{\bf{1}}}\) and \({{\bf{v}}_{\bf{0}}}\) precedes \({{\bf{v}}_{\bf{1}}}\). The algorithm begins by simultaneously choosing the edge of least weight incident to each vertex. The first edge in the ordering is taken in the case of ties. This produces a graph with no simple circuits, that is, a forest of trees (Exercise \({\bf{24}}\) asks for a proof of this fact). Next, simultaneously choose for each tree in the forest the shortest edge between a vertex in this tree and a vertex in a different tree. Again the first edge in the ordering is chosen in the case of ties. (This produces a graph with no simple circuits containing fewer trees than were present before this step; see Exercise \({\bf{24}}\).) Continue the process of simultaneously adding edges connecting trees until \({\bf{n - 1}}\) edges have been chosen. At this stage a minimum spanning tree has been constructed.

Show that the addition of edges at each stage of Sollinโ€™s algorithm produces a forest.

When Kruskal invented the algorithm that finds minimumspanning trees by adding edges in order of increasing weightas long as they do not form a simple circuit, he also inventedanother algorithm sometimes called the reverse-delete algorithm. This algorithm proceeds by successively deletingedges of maximum weight from a connected graph as long asdoing so does not disconnect the graph.

Express the reverse-delete algorithm in pseudocode.

Draw the first seven rooted Fibonacci trees.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free