Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Exercises 2–6 find a spanning tree for the graph shown by removing edges in simple circuits.

Short Answer

Expert verified

For the result follow the steps.

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Compare with the definition.

A spanning tree of a simple graph G is a subgraph of G that is a tree and that contains all vertices of G.

A tree is an undirected graph that is connected and that does not contains any single circuit. And a tree with n vertices has n-1 edges.

Here graph contains 7 vertices and 14 edges.

The spanning tree contains 7 vertices and 6 edges. Thus8 edges will be remove from the graph.

02

Remove the extra edges.

Since a tree cannot contains any single circuit and there are two tangents present in the graph. Then suffices to remove one edge from either triangle. Thus removing the edges (a,g),(d,g),(d,f),(b,e),(c,e).

Since all curve edges in the remaining graph still create a circuit.so remove other edges are (a,d),(d,g),(e,g).

Now. Thespanning tree will be as

This is the required result.

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In this exercise we will develop an algorithm to find the strong components of a directed graph \({\bf{G = }}\left( {{\bf{V,E}}} \right)\). Recall that a vertex \({\bf{w}} \in {\bf{V}}\) is reachable from a vertex \({\bf{v}} \in {\bf{V}}\) if there is a directed path from v to w.

  1. Explain how to use breadth-first search in the directed graph G to find all the vertices reachable from a vertex \({\bf{v}} \in {\bf{G}}\).
  2. Explain how to use breadth-first search in \({{\bf{G}}^{{\bf{conv}}}}\) to find all the vertices from which a vertex \({\bf{v}} \in {\bf{G}}\) is reachable. (Recall that \({{\bf{G}}^{{\bf{conv}}}}\) is the directed graph obtained from G by reversing the direction of all its edges.)
  3. Explain how to use part (a) and (b) to construct an algorithm that finds the strong components of a directed graph G, and explain why your algorithm is correct.

Show that a directed graph \({\bf{G = }}\left( {{\bf{V,E}}} \right)\) has an arborescence rooted at the vertex r if and only if for every vertex \({\bf{v}} \in {\bf{V}}\), there is a directed path from r to v.

Is the rooted tree in Exercise \(3\) a full \({\bf{m}}\)-ary tree for some positive integer \({\bf{m}}\)?

Can there be two different simple paths between the vertices of a tree?

Draw a game tree for him if the starting position consists of two piles with two and three stones, respectively. When drawing the tree represent by the same vertex symmetric positions that result from the same move. Find the valueof each vertex of the game tree. Who wins the game if both players follow an optimal strategy?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free