Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The eccentricity of a vertex in an unrooted tree is the length of the longest simple path beginning at this vertex. A vertex is called a center if no vertex in the tree has smaller eccentricity than this vertex. In Exercises 39-41find every vertex that is a center in the given tree.

39.



Short Answer

Expert verified

Here \(c\) is the only vertex in the tree having a minimal eccentricity. Hence, \(c\) is the center of the tree.

Step by step solution

01

Definition

The eccentricity of a vertex is the length of the longest simple path starting at the vertex in the unrooted tree.

A vertex is called a center if no vertex within the tree has a smaller eccentricity than this vertex.

02

Eccentricity of a vertex

In the given tree,

Eccentricity of \(a=4\)

Eccentricity of \(b=5\)

Eccentricity of \(c=3\)

Eccentricity of \(d=4\)

Eccentricity of \(e=4\)

Eccentricity of \(f=5\)

Eccentricity of \(b=5\)

Eccentricity of \(b=5\)

Eccentricity of \(i=5\)

Eccentricity of \(j=6\)

Eccentricity of \(k=6\)

Eccentricity of \(l=6\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Answer these questions about the rooted tree illustrated.

  1. Which vertex is the root\(?\)
  2. Which vertices are internal\(?\)
  3. Which vertices are leaves\(?\)
  4. Which vertices are children of \({\bf{j}}\)\(?\)
  5. Which vertex is the parent of \({\bf{h}}\)\(?\)
  6. Which vertices are siblings of \({\bf{o}}\)\(?\)
  7. Which vertices are ancestors of \({\bf{m}}\)\(?\)
  8. Which vertices are descendants of \({\bf{b}}\)\(?\)

Show that every tree can be colored using two colors. The rooted Fibonacci trees \({\bf{Tn}}\) are defined recursively in the following way. \({\bf{T1}}\)and\({\bf{T}}2\) are both the rooted tree consisting of a single vertex, and for \({\bf{n = 3, 4,}}...{\bf{,}}\) the rooted tree \({\bf{Tn}}\) is constructed from a root with \({\bf{Tn - }}1\) as its left subtree and \({\bf{Tn - 2}}\) as its right subtree.

In this exercise we will develop an algorithm to find the strong components of a directed graph \({\bf{G = }}\left( {{\bf{V,E}}} \right)\). Recall that a vertex \({\bf{w}} \in {\bf{V}}\) is reachable from a vertex \({\bf{v}} \in {\bf{V}}\) if there is a directed path from v to w.

  1. Explain how to use breadth-first search in the directed graph G to find all the vertices reachable from a vertex \({\bf{v}} \in {\bf{G}}\).
  2. Explain how to use breadth-first search in \({{\bf{G}}^{{\bf{conv}}}}\) to find all the vertices from which a vertex \({\bf{v}} \in {\bf{G}}\) is reachable. (Recall that \({{\bf{G}}^{{\bf{conv}}}}\) is the directed graph obtained from G by reversing the direction of all its edges.)
  3. Explain how to use part (a) and (b) to construct an algorithm that finds the strong components of a directed graph G, and explain why your algorithm is correct.

Give at least three examples of how trees are used in modeling.

Explain how breadth-first search and how depth-first search can be used to determine whether a graph is bipartite.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free