Universal address system:
- Label the roots with the integer 0. Then label its k children (at level 1) from left to right with 1, 2, 3, …, k.
- For each vertex v at level n with label A, label its \({{\bf{k}}_{\bf{v}}}\) children, as they are drawn from left to right, with \({\bf{A}}{\bf{.1,A}}{\bf{.2,}}...{\bf{,A}}{\bf{.}}{{\bf{k}}_{\bf{v}}}\).
Lexicographic ordering: the vertex labelled \({{\bf{x}}_{\bf{1}}}{\bf{.}}{{\bf{x}}_{\bf{2}}}.....{{\bf{x}}_{\bf{n}}}\) is less than the vertex labelled \({{\bf{y}}_{\bf{1}}}{\bf{.}}{{\bf{y}}_{\bf{2}}}.....{{\bf{y}}_{\bf{m}}}\) if there is an \({\bf{i,0}} \le {\bf{i}} \le {\bf{n}}\), with \({{\bf{x}}_{\bf{1}}}{\bf{ = }}{{\bf{y}}_{\bf{1}}}{\bf{,}}{{\bf{x}}_{\bf{2}}}{\bf{ = }}{{\bf{y}}_{\bf{2}}}{\bf{,}}...{\bf{,}}{{\bf{x}}_{{\bf{i - 1}}}}{\bf{ = }}{{\bf{y}}_{{\bf{i - 1}}}}\), and \({{\bf{x}}_{\bf{i}}}{\bf{ < }}{{\bf{y}}_{\bf{i}}}\); or if \({\bf{n < m}}\) and \({{\bf{x}}_{\bf{i}}}{\bf{ = }}{{\bf{y}}_{\bf{i}}}\) for \({\bf{i = 1,2,}}...{\bf{,n}}\).