Chapter 11: Q21E (page 803)
Find a spanning tree with minimal total weight containing the edges \(\left\{ {{\bf{e, i}}} \right\}\) and \(\left\{ {{\bf{g, k}}} \right\}\) in the weighted graph in Figure \(3\).
Short Answer
Answers could vary.
A possible such spanning tree contains the edges
\(\left( {{\bf{a, b}}} \right){\bf{,}}\left( {{\bf{a, e}}} \right){\bf{,}}\left( {{\bf{b, c}}} \right){\bf{,}}\left( {{\bf{b, f}}} \right){\bf{,}}\left( {{\bf{c, d}}} \right){\bf{,}}\left( {{\bf{c, g}}} \right){\bf{,}}\left( {{\bf{e, i}}} \right){\bf{,}}\left( {{\bf{f, j}}} \right){\bf{,}}\left( {{\bf{g, h}}} \right){\bf{,}}\left( {{\bf{g, k}}} \right){\bf{,}}\left( {{\bf{k, l}}} \right)\).