Chapter 11: Q16SE (page 805)
How many vertices are there in \({{\bf{B}}_{\bf{k}}}\) at depth j, where\(0 \le {\bf{j}} \le {\bf{k}}\)? Justify your answer.
Short Answer
The \({B_k}\)at depth j has \(C\left( {k,j} \right)\) vertices.
Chapter 11: Q16SE (page 805)
How many vertices are there in \({{\bf{B}}_{\bf{k}}}\) at depth j, where\(0 \le {\bf{j}} \le {\bf{k}}\)? Justify your answer.
The \({B_k}\)at depth j has \(C\left( {k,j} \right)\) vertices.
All the tools & learning materials you need for study success - in one app.
Get started for freeWhich of these graphs are trees?
Sollin's algorithm produces a minimum spanning tree from a connected weighted simple graph \({\bf{G = (V,E)}}\) by successively adding groups of edges. Suppose that the vertices in \({\bf{V}}\) are ordered. This produces an ordering of the edges where \({\bf{\{ }}{{\bf{u}}_{\bf{0}}}{\bf{,}}{{\bf{v}}_{\bf{0}}}{\bf{\} }}\) precedes \({\bf{\{ }}{{\bf{u}}_{\bf{1}}}{\bf{,}}{{\bf{v}}_{\bf{1}}}{\bf{\} }}\) if \({{\bf{u}}_{\bf{0}}}\) precedes \({{\bf{u}}_{\bf{1}}}\) or if \({{\bf{u}}_{\bf{0}}}{\bf{ = }}{{\bf{u}}_{\bf{1}}}\) and \({{\bf{v}}_{\bf{0}}}\) precedes \({{\bf{v}}_{\bf{1}}}\). The algorithm begins by simultaneously choosing the edge of least weight incident to each vertex. The first edge in the ordering is taken in the case of ties. This produces a graph with no simple circuits, that is, a forest of trees (Exercise \({\bf{24}}\) asks for a proof of this fact). Next, simultaneously choose for each tree in the forest the shortest edge between a vertex in this tree and a vertex in a different tree. Again the first edge in the ordering is chosen in the case of ties. (This produces a graph with no simple circuits containing fewer trees than were present before this step; see Exercise \({\bf{24}}\).) Continue the process of simultaneously adding edges connecting trees until \({\bf{n - 1}}\) edges have been chosen. At this stage a minimum spanning tree has been constructed.
Show that the addition of edges at each stage of Sollin’s algorithm produces a forest.
Suppose that \({{\bf{d}}_{\bf{1}}}{\bf{,}}{{\bf{d}}_{\bf{2}}}{\bf{,}}...{\bf{,}}{{\bf{d}}_{\bf{n}}}\) are n positive integers with sum \({\bf{2n - 2}}\). Show that there is a tree that has n vertices such that the degrees of these vertices are \({{\bf{d}}_{\bf{1}}}{\bf{,}}{{\bf{d}}_{\bf{2}}}{\bf{,}}...{\bf{,}}{{\bf{d}}_{\bf{n}}}\).
a. Explain how to use preorder, in-order, and post-order traversals to find the pre-fix, in-fix, and post-fix forms of an arithmetic expression.
b. Draw the ordered rooted tree that represents \({\bf{((x - 3) + ((x/4) + (x - y)}} \uparrow {\bf{3))}}\)
c. Find the pre-fix and post-fix forms of the expression in part \(\left( {\bf{b}} \right)\).
Can there be two different simple paths between the vertices of a tree?
What do you think about this solution?
We value your feedback to improve our textbook solutions.