Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Find a compound proposition involving the propositional variables \(p,q,r,and\,s\)that is true when exactly three of these propositional variables are true and is false otherwise.

Short Answer

Expert verified

The compound proposition for the given condition of the question is\(\left( {p \wedge q \wedge r \wedge \neg s} \right) \vee \left( {p \wedge q \wedge \neg r \wedge s} \right) \vee \left( {p \wedge \neg q \wedge r \wedge s} \right) \vee \left( {\neg p \wedge q \wedge r \wedge s} \right)\).

Step by step solution

01

Introduction

Consider the provided statement to find a compound proposition with the provided condition.

02

Truth table

As the provided condition is, the compound proposition involving variables\(p,q,r,and\,s\)is true when three propositional variables are true and is false otherwise.

\(\left( {p \wedge q \wedge r \wedge \neg s} \right) \vee \left( {p \wedge q \wedge \neg r \wedge s} \right) \vee \left( {p \wedge \neg q \wedge r \wedge s} \right) \vee \left( {\neg p \wedge q \wedge r \wedge s} \right)\)

Now, it is assumed that,

\(\begin{aligned}{}P = \left( {p \wedge q \wedge r \wedge \neg s} \right)\\Q = \left( {p \wedge q \wedge \neg r \wedge s} \right)\\R = \left( {p \wedge \neg q \wedge r \wedge s} \right)\\S = \left( {\neg p \wedge q \wedge r \wedge s} \right)\\W = \left( {p \wedge q \wedge r \wedge \neg s} \right) \vee \left( {p \wedge q \wedge \neg r \wedge s} \right) \vee \left( {p \wedge \neg q \wedge r \wedge s} \right) \vee \left( {\neg p \wedge q \wedge r \wedge s} \right)\end{aligned}\)

Now the truth table is as shown below;

\(p\)

\(q\)

\(r\)

\(s\)

\(P\)

\(Q\)

\(R\)

\(S\)

\(W\)

F

F

F

F

F

F

F

F

F

F

F

F

T

F

F

F

F

F

F

F

T

F

F

F

F

F

F

F

F

T

T

F

F

F

F

F

F

T

F

F

F

F

F

F

F

F

T

F

T

F

F

F

F

F

F

T

T

F

F

F

F

F

F

F

T

T

T

F

F

F

T

T

T

F

F

F

F

F

F

F

F

T

F

F

T

F

F

F

F

F

T

F

T

F

F

F

F

F

F

T

F

T

T

F

F

T

F

T

T

T

F

F

F

F

F

F

F

T

T

F

T

F

T

F

F

T

T

T

T

F

T

F

F

F

T

T

T

T

T

F

F

F

F

F

So proposition is

\(\left( {p \wedge q \wedge r \wedge \neg s} \right) \vee \left( {p \wedge q \wedge \neg r \wedge s} \right) \vee \left( {p \wedge \neg q \wedge r \wedge s} \right) \vee \left( {\neg p \wedge q \wedge r \wedge s} \right)\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free