Chapter 1: Q5E (page 108)
Prove using the notion without loss of generality that \({\bf{min}}\left( {{\bf{x,y}}} \right){\bf{ = }}\frac{{\left( {{\bf{x + y}} - \left| {{\bf{x - y}}} \right|} \right)}}{{\bf{2}}}\) and \({\bf{max}}\left( {{\bf{x,y}}} \right){\bf{ = }}\frac{{\left( {{\bf{x + y + }}\left| {{\bf{x - y}}} \right|} \right)}}{{\bf{2}}}\) whenever x and y are real numbers.
Short Answer
It is proved that \(\frac{{x + y - \left| {x - y} \right|}}{2} = y = \min \left( {x,y} \right)\) and \(\frac{{x + y + \left| {x - y} \right|}}{2} = x = \max \left( {x,y} \right)\)