Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

How many different truth tables of compound propositions are there that involve the propositional variables p and q.

Short Answer

Expert verified

For finding the number of truth tables of compound propositions that contains the propositional variables pand q , find the number of input variables and the rows in the truth table.

Step by step solution

01

Definition of Truth Table  

A logic gate truth table depicts each feasible input sequence to the gate or circuit, as well as the resulting output based on the combination of these inputs.

02

To find the number of truth tables of compound propositions that involve two propositional variables such as p and q .

There are two propositional variables such aspandq.

The number of rows in the truth table are 2×2=4as each variable contains two possible truth values such as T andF.

The number of possible truth tables are 2×2×2×2=16as there are four rows and each variable has two possible truth values.

Therefore, there are16truth tables of compound propositions that contains the propositional variables pand q .

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Write each of these propositions in the form “p if and only if q” in English.

a) If it is hot outside you buy an ice cream cone, and if you buy an ice cream cone it is hot outside.
b) For you to win the contest it is necessary and sufficient that you have the only winning ticket.
c) You get promoted only if you have connections, and you have connections only if you get promoted.
d) If you watch television your mind will decay, and conversely.

e) The trains run late on exactly those days when I take it.

A says “We are both knaves” and B says nothing. Exercises 24–31 relate to inhabitants of an island on which there are three kinds of people: knights who always tell the truth, knaves who always lie, and spies (called normals by Smullyan [Sm78]) who can either lie or tell the truth. You encounter three people, A, B, and C. You know one of these people is a knight, one is a knave, and one is a spy. Each of the three people knows the type of person each of other two is. For each of these situations, if possible, determine whether there is a unique solution and determine who the knave, knight, and spy are. When there is no unique solution, list all possible solutions or state that there are no solutions.

A says “I am the knave,” B says “I am the knave,” and C says “I am the knave.”

When does s*=s, where s is a compound proposition

You can upgrade your operating system only if you have a 32-bit processor running at 1 GHz or faster, at least 1 GB RAM, and 16 GB free hard disk space, or a 64- bit processor running at 2 GHz or faster, at least 2 GB RAM, and at least 32 GB free hard disk space. Express you answer in terms of u: “You can upgrade your operating system,” b32: “You have a 32-bit processor,” b64: “You have a 64-bit processor,” g1: “Your processor runs at 1 GHz or faster,” g2: “Your processor runs at 2 GHz or faster,” r1: “Your processor has at least 1 GB RAM,” r2: “Your processor has at least 2 GB RAM,” h16: “You have at least 16 GB free hard disk space,” and h32: “You have at least 32 GB free hard disk space.”

Use truth tables to verify the associative laws.

(a) pqrpqr (b)pqrpqr

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free