Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Show that(pq)r and(pr)(qr)are not logicallyequivalent

Short Answer

Expert verified

(pq)rand(pr)(qr)are not equivalent logically.

Step by step solution

01

Step1:Definition of Logical equivalence

Logical equivalence is a relationship between two statementsin propositional logic.

02

The two statements are not logically equivalent

We write given expression,

(pq)r=¬(pq)r                =(¬p¬q)r

Now we write other expression,

(pr)(qr)=(¬pr)(¬qr)A                        =(¬p¬q)r......[Distributivelaw]

We can see the two statements are not equal.

(pq)rand (pr)(qr)are not logically equivalent.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A says “We are both knaves” and B says nothing. Exercises 24–31 relate to inhabitants of an island on which there are three kinds of people: knights who always tell the truth, knaves who always lie, and spies (called normals by Sullying [Sm78]) who can either lie or tell the truth. You encounter three people, A, B, and C. You know one of these people is a knight, one is a knave, and one is a spy. Each of the three people knows the type of person each of other two is. For each of these situations, if possible, determine whether there is a unique solution and determine who the knave, knight, and spy are. When there is no unique solution, list all possible solutions or state that there are no solutions

A says “I am the knight,” B says “I am the knight,” and C says “I am the knight.”

Are these system specifications consistent? “Whenever the system software is being upgraded, users cannot access the file system. If users can access the file system, then they can save new files. If users cannot save new files, then the system software is not being upgraded.”

A says “We are both knaves” and B says nothing. Exercises 24–31 relate to inhabitants of an island on which there are three kinds of people: knights who always tell the truth, knaves who always lie, and spies (called normals by Smullyan [Sm78]) who can either lie or tell the truth. You encounter three people, A, B, and C. You know one of these people is a knight, one is a knave, and one is a spy. Each of the three people knows the type of person each of other two is. For each of these situations, if possible, determine whether there is a unique solution and determine who the knave, knight, and spy are. When there is no unique solution, list all possible solutions or state that there are no solutions.

A says “I am the knave,” B says “I am the knave,” and C says “I am the knave.”

You can see the movie only if you are over 18 years old or you have the permission of a parent. Express your answer in terms of m: “You can see the movie,” e: “You are over 18 years old,” and p: “You have the permission of a parent.”

Let p and q be the propositions

p: I bought a lottery ticket this week.
q: I won the million-dollar jackpot.

Express each of these propositions as an English sentence.

a)¬p

b)pq

c)pq

d) pq

e)pq

f )¬p¬q

g)¬p¬q

h)¬p(pq)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free