Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Rewrite each of these statements so that negations appear only within predicates(that is, so that no negation is outside a quantifier or an expression involving logical connectives).

a)¬yxP(x,y)b)¬xyP(x,y)c)¬y(Q(y)x¬R(x,y))d)¬y(xR(x,y)xS(x,y))e)¬y(xzT(x,y,z)xzU(x,y,z))

Short Answer

Expert verified

The Statements can be rewrite.

Step by step solution

01

Finding the Truth values for ¬∃x∃yP(x,y)

The Statement “¬yxP(x,y)

As it is known that¬y=y,¬x=x

Then,¬yxP(x,y)"yx¬P(x,y)

As a result, The Statement “¬yxP(x,y)” is rewrite as “yx¬P(x,y)”.

02

Finding the Truth values for ¬∀x∃yP(x,y)

The Statement “¬xyP(x,y)

As it is known that¬y=y,¬x=x

Then,¬xyP(x,y)"xy¬P(x,y)"

As a result, The Statement “¬xyP(x,y)” is rewrite as “xy¬P(x,y)”.

03

Finding the Truth values for ¬∃y(Q(y)∧∀x¬R(x,y))

The Statement “¬y(Q(y)x¬R(x,y))

As it is known that role="math" localid="1668600741300" ¬y=y,¬x=x,¬()=

Then,¬y(Q(y)x¬R(x,y))"y(¬Q(y)xR(x,y))"

As a result, The Statement “¬y(Q(y)x¬R(x,y))” is rewrite as

y(¬Q(y)xR(x,y))”.

04

Finding the Truth values for ¬∃y(∃xR(x,y)∨∀xS(x,y))

The Statement “¬y(xR(x,y)xS(x,y))

As it is known that¬y(xR(x,y)xS(x,y))

Then,¬y(xR(x,y)xS(x,y))"y(x¬R(x,y)x¬S(x,y))"

As a result, The Statement “¬y(Q(y)x¬R(x,y))” is rewrite as

y(x¬R(x,y)x¬S(x,y))”.

05

Finding the Truth values for ¬∃y(∀x∃zT(x,y,z)∨∃x∀zU(x,y,z))

The Statement “¬y(xzT(x,y,z)xzU(x,y,z))

As it is known that¬y=y,¬x=x,¬()=

Then, role="math" localid="1668603146505" ¬y(xzT(x,y,z)xz(x,y,z))y(xz¬T(x,y,z)xz¬(x,y))

As a result, The Statement “¬y(xzT(x,y,z)xz(x,y,z))” is rewrite as

y(xz¬T(x,y,z)xz¬(x,y))”.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

To use the wireless network in the airport you must pay the daily fee unless you are a subscriber to the service. Express your answer in terms of w: “You can use the wireless network in the airport,” d: “You pay the daily fee,” and s: “You are a subscriber to the service.”

Which of these sentences are propositions? What are the truth values of those that are propositions?

  1. Boston is a capital of Massachusetts
  2. Miami is the capital of Florida
  3. 2+3=5
  4. 5+7=10
  5. x+2=11
  6. Answer this question

You can graduate only if you have completed the requirements of your major and you do not owe money to the university and you do not have an overdue library book. Express your answer in terms of g: “You can graduate,” m: “You owe money to the university,” r: “You have completed the requirements of your major,” and b: “You have an overdue library book.”

Find a compound proposition involving the propositional variables, p,qand r that is true when exactly two of, p,qand r are true and is false otherwise. [Hint: Form a disjunction of conjunctions. Include a conjunction for each combination of values for which the compound proposition is true. Each conjunction should include each of the three propositional variables or its negations.]

Let P(x),Q(x),andR(x)be the statements “xis a professor,” “xis ignorant,” and “xis vain,” respectively. Express each of these statements using quantifiers; logical connectives; andP(x),Q(x),andR(x)where the domain consists of all people.

a) No professors are ignorant.

b) All ignorant people are vain.

c) No professors are vain.

d) Does (c) follow from (a) and (b)?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free