Chapter 1: Q28E (page 67)
Determine the truth value of each of these statements if the domain for all variables consists of all real numbers.
a) \(\forall x\exists y\left( {{x^2} = y} \right)\) b) \(\forall x\exists y\left( {x = {y^2}} \right)\)
c) \(\exists x\forall y\left( {xy = 0} \right)\) d) \(\exists x\exists y\left( {x + y \ne y + x} \right)\)
e) \(\forall x\left( {x \ne 0 \to \exists y\left( {xy = 1} \right)} \right)\) f) \(\exists x\forall y\left( {y \ne 0 \to xy = 1} \right)\)
g) \(\forall x\exists y\left( {x + y = 1} \right)\) h) \(\exists x\exists y\left( {x + 2y = 2 \wedge 2x + 4y = 5} \right)\)
i) \(\forall x\exists y\left( {x + y = 2 \wedge 2x - y = 1} \right)\) j) \(\forall x\forall y\exists z\left( {z = \left( {x + y} \right)/2} \right)\)
Short Answer
The Truth values can be Determine.