An integer m and real number \(\delta \)with \(x = m + \delta \) and \(0 < \delta < 1\).
\(\begin{aligned}{}n + \varepsilon = m + \delta \\n - m = \delta - \varepsilon \end{aligned}\)
But, if \(0 \le \varepsilon ,\delta < 1\),then\(\left| {\delta - \varepsilon } \right| < 1\).
If\(\delta - \varepsilon = n - m\), then \(\delta - \varepsilon \)is an integer and the only integer with absolute value less than 1 is 0.
So,
\(\begin{aligned}{}\delta - \varepsilon = 0\\ = n - m\end{aligned}\).
Thus, \(\delta = \varepsilon \) and \(n = m\).
Therefore, the expansion\(x = n + \varepsilon \)is unique.