Chapter 9: Q9E (page 581)
Show that the relation on a non-empty set is symmetric, transitive and reflexive.
Short Answer
Hence is symmetric, transitive and reflexive.
Chapter 9: Q9E (page 581)
Show that the relation on a non-empty set is symmetric, transitive and reflexive.
Hence is symmetric, transitive and reflexive.
All the tools & learning materials you need for study success - in one app.
Get started for freeExercises 34–37 deal with these relations on the set of real numbers:
\({R_1} = \left\{ {\left( {a,\;b} \right) \in {R^2}|a > b} \right\},\)the “greater than” relation,
\({R_2} = \left\{ {\left( {a,\;b} \right) \in {R^2}|a \ge b} \right\},\)the “greater than or equal to” relation,
\({R_3} = \left\{ {\left( {a,\;b} \right) \in {R^2}|a < b} \right\},\)the “less than” relation,
\({R_4} = \left\{ {\left( {a,\;b} \right) \in {R^2}|a \le b} \right\},\)the “less than or equal to” relation,
\({R_5} = \left\{ {\left( {a,\;b} \right) \in {R^2}|a = b} \right\},\)the “equal to” relation,
\({R_6} = \left\{ {\left( {a,\;b} \right) \in {R^2}|a \ne b} \right\},\)the “unequal to” relation.
36. Find
(a) \({R_1}^\circ {R_1}\).
(b) \({R_1}^\circ {R_2}\).
(c) \({R_1}^\circ {R_3}\).
(d) \({R_1}^\circ {R_4}\).
(e) \({R_1}^\circ {R_5}\).
(f) \({R_1}^\circ {R_6}\).
(g) \({R_2}^\circ {R_3}\).
(h) \({R_3}^\circ {R_3}\).
Show that if \(C\) is a condition that elements of the \(n\)-ary relation \(R\)and \(S\)may satisfy, then \({s_C}(R - S) = {s_C}(R) - {s_C}(S)\).
Show that the relation \(R\) on a set \(A\) is antisymmetric if and only if \(R \cap {R^{ - 1}}\) is a subset of the diagonal relation \(\Delta = \{ (a,a)\mid a \in A\} \).
Draw the Hasse diagram for the less than or equal to relation on \(\{ 0,2,5,10,11,15\} \).
To find the transitive closers of the relation \(\{ (1,2),(2,1),(2,3),(3,4),(4,1)\} \) with the use of Warshall’s algorithm.
What do you think about this solution?
We value your feedback to improve our textbook solutions.