Chapter 9: Q7E (page 581)
To determine whether the relation on the set of all real numbers is reflexive, symmetric, anti symmetric, transitive, where if and only if.
Short Answer
The given set is anti symmetric.
Chapter 9: Q7E (page 581)
To determine whether the relation on the set of all real numbers is reflexive, symmetric, anti symmetric, transitive, where if and only if.
The given set is anti symmetric.
All the tools & learning materials you need for study success - in one app.
Get started for freeExercises 34–37 deal with these relations on the set of real numbers:
\({R_1} = \left\{ {\left( {a,\;b} \right) \in {R^2}|a > b} \right\},\)the “greater than” relation,
\({R_2} = \left\{ {\left( {a,\;b} \right) \in {R^2}|a \ge b} \right\},\)the “greater than or equal to” relation,
\({R_3} = \left\{ {\left( {a,\;b} \right) \in {R^2}|a < b} \right\},\)the “less than” relation,
\({R_4} = \left\{ {\left( {a,\;b} \right) \in {R^2}|a \le b} \right\},\)the “less than or equal to” relation,
\({R_5} = \left\{ {\left( {a,\;b} \right) \in {R^2}|a = b} \right\},\)the “equal to” relation,
\({R_6} = \left\{ {\left( {a,\;b} \right) \in {R^2}|a \ne b} \right\},\)the “unequal to” relation.
35. Find
(a) \({R_2} \cup {R_4}\).
(b) \({R_3} \cup {R_6}\).
(c) \({R_3} \cap {R_6}\).
(d) \({R_4} \cap {R_6}\).
(e) \({R_3} - {R_6}\).
(f) \({R_6} - {R_3}\).
(g) \({R_2} \oplus {R_6}\).
(h) \({R_3} \oplus {R_5}\).
Find all circuits of length three in the directed graph in Exercise 16.
Show that the relation \(R\) on a set \(A\) is antisymmetric if and only if \(R \cap {R^{ - 1}}\) is a subset of the diagonal relation \(\Delta = \{ (a,a)\mid a \in A\} \).
Let \(R\) the relation \(\{ (1,2),(1,3),(2,3),(2,4),(3,1)\} \) and \(S\) be the relation \(\{ (2,1),(3,1),(3,2),(4,2)\} \). Find \(S \circ R\).
Use quantifiers to express what it means for a relation to be asymmetric.
What do you think about this solution?
We value your feedback to improve our textbook solutions.