Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

How to use a zero-one matrix to represent a relation to determine whether the relation is reflexive, symmetric or antisymmetric?

Short Answer

Expert verified

Answer is detailed below.

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Given data

A zero-one matrix to represent a relation.

02

Concept used relation

A relation between two sets is a collection of ordered pairs containing one object from each set.

03

Define relation

A reflexive relation must have all ones on the main diagonal, because we need to have \((a,a)\) in the relation for every element \(a\).

A symmetric relation must have the same entries above and below the diagonal, that is, a symmetric matrix remains the same if we switch rows with columns. This is because by definition, if \((a,b)\) ? R, then \((b,a)\) must also be in \(R\).

In an anti symmetric matrix, if there is a 1 above or below the main diagonal, there must be a zero as the mirror image on the other side of the diagonal. By definition, a relation \({\rm{R}}\) is anti symmetric if and only if we have: \((a,b) \in R \wedge (b,a) \in R \Rightarrow a = b\)

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Exercises 34–37 deal with these relations on the set of real numbers:

\({R_1} = \left\{ {\left( {a,\;b} \right) \in {R^2}|a > b} \right\},\)the “greater than” relation,

\({R_2} = \left\{ {\left( {a,\;b} \right) \in {R^2}|a \ge b} \right\},\)the “greater than or equal to” relation,

\({R_3} = \left\{ {\left( {a,\;b} \right) \in {R^2}|a < b} \right\},\)the “less than” relation,

\({R_4} = \left\{ {\left( {a,\;b} \right) \in {R^2}|a \le b} \right\},\)the “less than or equal to” relation,

\({R_5} = \left\{ {\left( {a,\;b} \right) \in {R^2}|a = b} \right\},\)the “equal to” relation,

\({R_6} = \left\{ {\left( {a,\;b} \right) \in {R^2}|a \ne b} \right\},\)the “unequal to” relation.

34. Find

(a) \({R_1} \cup {R_3}\).

(b) \({R_1} \cup {R_5}\).

(c) \({R_2} \cap {R_4}\).

(d) \({R_3} \cap {R_5}\).

(e) \({R_1} - {R_2}\).

(f) \({R_2} - {R_1}\).

(g) \({R_1} \oplus {R_3}\).

(h) \({R_2} \oplus {R_4}\).

To determine for each of these relations on the set {1,2,3,4}decide whether it is reflexive, whether it is symmetric, whether it is anti symmetric, and whether it is transitive {(1,3),(1,4),(2,3),(2,4),(3,1),(3,4)}.

What do you obtain when you apply the selection operator \({s_C}\), where \(C\) is the condition (Project \( = 2\) ) \( \wedge \) (Quantity \( \ge 50\) ), to the database in Table 10 ?

Exercises 34–37 deal with these relations on the set of real numbers:

\({R_1} = \left\{ {\left( {a,\;b} \right) \in {R^2}|a > b} \right\},\)the “greater than” relation,

\({R_2} = \left\{ {\left( {a,\;b} \right) \in {R^2}|a \ge b} \right\},\)the “greater than or equal to” relation,

\({R_3} = \left\{ {\left( {a,\;b} \right) \in {R^2}|a < b} \right\},\)the “less than” relation,

\({R_4} = \left\{ {\left( {a,\;b} \right) \in {R^2}|a \le b} \right\},\)the “less than or equal to” relation,

\({R_5} = \left\{ {\left( {a,\;b} \right) \in {R^2}|a = b} \right\},\)the “equal to” relation,

\({R_6} = \left\{ {\left( {a,\;b} \right) \in {R^2}|a \ne b} \right\},\)the “unequal to” relation.

36. Find

(a) \({R_1}^\circ {R_1}\).

(b) \({R_1}^\circ {R_2}\).

(c) \({R_1}^\circ {R_3}\).

(d) \({R_1}^\circ {R_4}\).

(e) \({R_1}^\circ {R_5}\).

(f) \({R_1}^\circ {R_6}\).

(g) \({R_2}^\circ {R_3}\).

(h) \({R_3}^\circ {R_3}\).

Which relations in Exercise 4 are irreflexive?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free