Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

(a) To find Relation\({R^2}\)

(b) To find Relation \({R^3}\)

(c) To find Relation \({R^4}\)

(d) To find Relation\({R^5}\)

Short Answer

Expert verified

(a)The solution of Relation\({R^2} = \left\{ \begin{array}{l}(1,1),(1,2),(1,3),(1,4),(1,5),\\(2,1),(2,2),(2,4)(2,5),\\(3,1),(3,2),(3,3),(3,4),(3,5),\\(4,1),(4,2)(4,3),(4,4),\\(5,1),(5,2),(5,3),(5,4),(5,5)\end{array} \right\}\)

(b) The solution of Relation\({R^3} = \left\{ \begin{array}{l}(1,1),(1,2),(1,3),(1,4),(1,5),\\(2,1),(2,2),(2,3),(2,4),(2,5),\\(3,1),(3,2),(3,3),(3,4),(3,5),\\(4,1),(4,2),(4,3),(4,4),(4,5),\\(5,1),(5,2),(5,3),(5,4),(5,5)\end{array} \right\}\)

(c) The solution of Relation\({R^4} = \left\{ \begin{array}{l}(1,1),(1,2),(1,3),(1,4),(1,5),\\(2,1),(2,2),(2,3),(2,4)(2,5),\\(3,1),(3,2),(3,3),(3,4),(3,5),\\(4,1),(4,2)(4,3),(4,4),(4,5),\\(5,1),(5,2),(5,3),(5,4),(5,5)\end{array} \right\}\)

(d) The solution of Relation\({R^4} = \left\{ \begin{array}{l}(1,1),(1,2),(1,3),(1,4),(1,5),\\(2,1),(2,2),(2,3),(2,4)(2,5),\\(3,1),(3,2),(3,3),(3,4),(3,5),\\(4,1),(4,2)(4,3),(4,4),(4,5),\\(5,1),(5,2),(5,3),(5,4),(5,5)\end{array} \right\}\)

Step by step solution

01

 Given

(a)Relation \(R = \{ (1,1),(1,2),(1,3),(2,3),(2,4),(3,1),(3,4),(3,5),(4,2),(4,5),(5,1)\),

\(\qquad (5,2),(5,4)\} \)

On set \(A = \{ 1,2,3,4,5\} \)

(b)Relation\(R = \{ (1,1),(1,2),(1,3),(2,3),(2,4),(3,1),(3,4),(3,5),(4,2),(4,5),(5,1)\)\(\qquad (5,2),(5,4)\} \)

On set \(A = \{ 1,2,3,4,5\} \).

(c)Relation\(R = \{ (1,1),(1,2),(1,3),(2,3),(2,4),(3,1),(3,4),(3,5),(4,2),(4,5),(5,1)\)\(\qquad (5,2),(5,4)\} \)

On set \(A = \{ 1,2,3,4,5\} \).

(d)Relation\(R = \{ (1,1),(1,2),(1,3),(2,3),(2,4),(3,1),(3,4),(3,5),(4,2),(4,5),(5,1)\)\(\qquad (5,2),(5,4)\} \)

On set \(A = \{ 1,2,3,4,5\} \).

02

The Concept ofrelation

An n-array relation on n sets, is any subset of Cartesian product of the n sets (i.e., a collection ofn-tuples), with the most common one being a binary relation, a collection of order pairs from two sets containing an object from each set. The relation is homogeneous when it is formed with one set.

03

Determine the value of relation (a)

Consider the relation\(R\)

\({R^2} \Rightarrow \)paths of length 2

\(\begin{array}{c}{R^2} = R \cdot R\\ = \{ (1,1),(1,2),(1,3),(1,4),(1,5),\\(2,1),(2,2),(2,4),(2,5),\\(3,1),(3,2),(3,3),(3,4),(3,5),\\(4,1),(4,2),(4,3),(4,4),\\(5,1),(5,2),(5,3),(5,4),(5,5)\} \end{array}\)

04

Determine the value of relation (b)

Consider the relation \(R\)

\({R^3} \Rightarrow \)paths of length 3

\(\begin{array}{c}{R^3} = {R^2}.R\\ = \{ (1,1),(1,2),(1,3),(1,4),(1,5),\\(2,1),(2,2),(2,3),(2,4)(2,5),\\(3,1),(3,2),(3,3),(3,4),(3,5),\\(4,1),(4,2)(4,3),(4,4),(4,5),\\(5,1),(5,2),(5,3),(5,4),(5,5)\} \end{array}\)

05

Determine the value of relation (c)

Consider the relation\(R\)

\({R^4} \Rightarrow \)paths of length 4

\(\begin{array}{c}{R^4} = {R^3} \cdot R\\ = \{ (1,1),(1,2),(1,3),(1,4),(1,5),\\(2,1),(2,2),(2,3),(2,4)(2,5),\\(3,1),(3,2),(3,3),(3,4),(3,5),\\(4,1),(4,2)(4,3),(4,4),(4,5),\\(5,1),(5,2),(5,3),(5,4),(5,5)\} \end{array}\)

06

Determine the value of relation (d)

Consider the relation\(R\)

\({R^5} \Rightarrow \)paths of length 5

\(\begin{array}{c}{R^5} = {R^4} \bullet R\\ = \{ (1,1),(1,2),(1,3),(1,4),(1,5),\\(2,1),(2,2),(2,3),(2,4),(2,5),\\(3,1),(3,2),(3,3),(3,4),(3,5),\\(4,1),(4,2),(4,3),(4,4),(4,5),\\(5,1),(5,2),(5,3),(5,4),(5,5)\} \end{array}\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free