Chapter 9: Q53E (page 632)
To determine \(\left( {{Z^ + } \times {Z^ + }, \prec } \right)\) is a well ordered set.
Short Answer
Hence, \(\left( {{Z^ + } \times {Z^ + }, < } \right)\)is a well ordered set.
Chapter 9: Q53E (page 632)
To determine \(\left( {{Z^ + } \times {Z^ + }, \prec } \right)\) is a well ordered set.
Hence, \(\left( {{Z^ + } \times {Z^ + }, < } \right)\)is a well ordered set.
All the tools & learning materials you need for study success - in one app.
Get started for freeTo prove that \(R\) is reflexive if and only if \({R^{ - 1}}\) is reflexive.
Exercises 34โ37 deal with these relations on the set of real numbers:
\({R_1} = \left\{ {\left( {a,\;b} \right) \in {R^2}|a > b} \right\},\)the โgreater thanโ relation,
\({R_2} = \left\{ {\left( {a,\;b} \right) \in {R^2}|a \ge b} \right\},\)the โgreater than or equal toโ relation,
\({R_3} = \left\{ {\left( {a,\;b} \right) \in {R^2}|a < b} \right\},\)the โless thanโ relation,
\({R_4} = \left\{ {\left( {a,\;b} \right) \in {R^2}|a \le b} \right\},\)the โless than or equal toโ relation,
\({R_5} = \left\{ {\left( {a,\;b} \right) \in {R^2}|a = b} \right\},\)the โequal toโ relation,
\({R_6} = \left\{ {\left( {a,\;b} \right) \in {R^2}|a \ne b} \right\},\)the โunequal toโ relation.
35. Find
(a) \({R_2} \cup {R_4}\).
(b) \({R_3} \cup {R_6}\).
(c) \({R_3} \cap {R_6}\).
(d) \({R_4} \cap {R_6}\).
(e) \({R_3} - {R_6}\).
(f) \({R_6} - {R_3}\).
(g) \({R_2} \oplus {R_6}\).
(h) \({R_3} \oplus {R_5}\).
To determine whether the relation on the set of all real numbers is reflexive, symmetric, anti symmetric, transitive, where if and only if.
Which of these relations on \(\{ 0,1,2,3\} \) are equivalence relations? Determine the properties of an equivalence relation that the others lack.
What do you obtain when you apply the projection \({P_{2,3,5}}\) to the 5 -tuple \((a,b,c,d,e)\)?
What do you think about this solution?
We value your feedback to improve our textbook solutions.