Chapter 9: Q51E (page 583)
To prove the error in the given proof a theorem.
Short Answer
The error in given proof a theorem is "Take an element \(b \in A\) such that \((a,b) \in R\) ".
Chapter 9: Q51E (page 583)
To prove the error in the given proof a theorem.
The error in given proof a theorem is "Take an element \(b \in A\) such that \((a,b) \in R\) ".
All the tools & learning materials you need for study success - in one app.
Get started for freeWhich relations in Exercise 4 are asymmetric?
To determine whether the relation on the set of all real numbers is reflexive, symmetric, anti symmetric, transitive, where if and only ifx=1 or y=1.
Exercises 34โ37 deal with these relations on the set of real numbers:
\({R_1} = \left\{ {\left( {a,\;b} \right) \in {R^2}|a > b} \right\},\)the โgreater thanโ relation,
\({R_2} = \left\{ {\left( {a,\;b} \right) \in {R^2}|a \ge b} \right\},\)the โgreater than or equal toโ relation,
\({R_3} = \left\{ {\left( {a,\;b} \right) \in {R^2}|a < b} \right\},\)the โless thanโ relation,
\({R_4} = \left\{ {\left( {a,\;b} \right) \in {R^2}|a \le b} \right\},\)the โless than or equal toโ relation,
\({R_5} = \left\{ {\left( {a,\;b} \right) \in {R^2}|a = b} \right\},\)the โequal toโ relation,
\({R_6} = \left\{ {\left( {a,\;b} \right) \in {R^2}|a \ne b} \right\},\)the โunequal toโ relation.
34. Find
(a) \({R_1} \cup {R_3}\).
(b) \({R_1} \cup {R_5}\).
(c) \({R_2} \cap {R_4}\).
(d) \({R_3} \cap {R_5}\).
(e) \({R_1} - {R_2}\).
(f) \({R_2} - {R_1}\).
(g) \({R_1} \oplus {R_3}\).
(h) \({R_2} \oplus {R_4}\).
To determine whether the relation R on the set of all web pages is reflexive, symmetric, anti symmetric, transitive, where if and only if there is a webpage that includes links to both webpage a and webpage b.
Exercises 34โ37 deal with these relations on the set of real numbers:
\({R_1} = \left\{ {\left( {a,\;b} \right) \in {R^2}|a > b} \right\},\)the โgreater thanโ relation,
\({R_2} = \left\{ {\left( {a,\;b} \right) \in {R^2}|a \ge b} \right\},\)the โgreater than or equal toโ relation,
\({R_3} = \left\{ {\left( {a,\;b} \right) \in {R^2}|a < b} \right\},\)the โless thanโ relation,
\({R_4} = \left\{ {\left( {a,\;b} \right) \in {R^2}|a \le b} \right\},\)the โless than or equal toโ relation,
\({R_5} = \left\{ {\left( {a,\;b} \right) \in {R^2}|a = b} \right\},\)the โequal toโ relation,
\({R_6} = \left\{ {\left( {a,\;b} \right) \in {R^2}|a \ne b} \right\},\)the โunequal toโ relation.
35. Find
(a) \({R_2} \cup {R_4}\).
(b) \({R_3} \cup {R_6}\).
(c) \({R_3} \cap {R_6}\).
(d) \({R_4} \cap {R_6}\).
(e) \({R_3} - {R_6}\).
(f) \({R_6} - {R_3}\).
(g) \({R_2} \oplus {R_6}\).
(h) \({R_3} \oplus {R_5}\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.