Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

To prove the error in the given proof a theorem.

Short Answer

Expert verified

The error in given proof a theorem is "Take an element \(b \in A\) such that \((a,b) \in R\) ".

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

 Given

Let \(a \in A\). Take an element \(b \in A\) such that \((a,b) \in R\).

02

The Concept of reflexive relation

Let the relation\(R\)on set\(A\)that is symmetric and transitive. Then\(R\)is reflexive.

03

Determine the relation

Let the relation\(R\)on set\(A\)that is symmetric and transitive. Then\(R\)is reflexive

let\(a \in A\). Take an element\(b \in A\)such that\((a,b) \in R\). because\(R\)is symmetric, we also have\((b,a) \in R\). Now using the transitive property, we can conclude that\((a,a) \in R\). because\((a,b) \in R\)and\((b,a) \in R\).

Consider the statement "relation\(R\)on set\(A\)which is symmetric and transitive. Then\(R\)is reflexive"

If we observe the proof, if the element\(b\)is not exist, then the proof is correct.

Take an element \(b \in A\) such that \((a,b) \in R\). is wrong. Because \(R\) is reflexive.

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Which relations in Exercise 4 are asymmetric?

To determine whether the relation R on the set of all real numbers is reflexive, symmetric, anti symmetric, transitive, where (x,y)โˆˆR if and only ifx=1 or y=1.

Exercises 34โ€“37 deal with these relations on the set of real numbers:

\({R_1} = \left\{ {\left( {a,\;b} \right) \in {R^2}|a > b} \right\},\)the โ€œgreater thanโ€ relation,

\({R_2} = \left\{ {\left( {a,\;b} \right) \in {R^2}|a \ge b} \right\},\)the โ€œgreater than or equal toโ€ relation,

\({R_3} = \left\{ {\left( {a,\;b} \right) \in {R^2}|a < b} \right\},\)the โ€œless thanโ€ relation,

\({R_4} = \left\{ {\left( {a,\;b} \right) \in {R^2}|a \le b} \right\},\)the โ€œless than or equal toโ€ relation,

\({R_5} = \left\{ {\left( {a,\;b} \right) \in {R^2}|a = b} \right\},\)the โ€œequal toโ€ relation,

\({R_6} = \left\{ {\left( {a,\;b} \right) \in {R^2}|a \ne b} \right\},\)the โ€œunequal toโ€ relation.

34. Find

(a) \({R_1} \cup {R_3}\).

(b) \({R_1} \cup {R_5}\).

(c) \({R_2} \cap {R_4}\).

(d) \({R_3} \cap {R_5}\).

(e) \({R_1} - {R_2}\).

(f) \({R_2} - {R_1}\).

(g) \({R_1} \oplus {R_3}\).

(h) \({R_2} \oplus {R_4}\).


To determine whether the relation R on the set of all web pages is reflexive, symmetric, anti symmetric, transitive, where (a,b)โˆˆRif and only if there is a webpage that includes links to both webpage a and webpage b.

Exercises 34โ€“37 deal with these relations on the set of real numbers:

\({R_1} = \left\{ {\left( {a,\;b} \right) \in {R^2}|a > b} \right\},\)the โ€œgreater thanโ€ relation,

\({R_2} = \left\{ {\left( {a,\;b} \right) \in {R^2}|a \ge b} \right\},\)the โ€œgreater than or equal toโ€ relation,

\({R_3} = \left\{ {\left( {a,\;b} \right) \in {R^2}|a < b} \right\},\)the โ€œless thanโ€ relation,

\({R_4} = \left\{ {\left( {a,\;b} \right) \in {R^2}|a \le b} \right\},\)the โ€œless than or equal toโ€ relation,

\({R_5} = \left\{ {\left( {a,\;b} \right) \in {R^2}|a = b} \right\},\)the โ€œequal toโ€ relation,

\({R_6} = \left\{ {\left( {a,\;b} \right) \in {R^2}|a \ne b} \right\},\)the โ€œunequal toโ€ relation.

35. Find

(a) \({R_2} \cup {R_4}\).

(b) \({R_3} \cup {R_6}\).

(c) \({R_3} \cap {R_6}\).

(d) \({R_4} \cap {R_6}\).

(e) \({R_3} - {R_6}\).

(f) \({R_6} - {R_3}\).

(g) \({R_2} \oplus {R_6}\).

(h) \({R_3} \oplus {R_5}\).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free