Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

(a)Which of the 16 relations on \(\{ 0,1\} \), which you listed are reflexive?

(b)Which of the 16 relations on \(\{ 0,1\} \), which you listed are irreflexive.

(c)Which of the 16 relations on \(\{ 0,1\} \), which you listed are symmetric.

(d)Which of the 16 relations on \(\{ 0,1\} \), which you listed are anti-symmetric.(e)Which of the 16 relations on \(\{ 0,1\} \), which you listed are asymmetric.

(f)Which of the 16 relations on \(\{ 0,1\} \), which you listed are transitive?

Short Answer

Expert verified

(a)\({R_{\rm{8}}},{R_{13}},{R_{14}},{R_{16}}\)are reflexive in nature.

(b)\({R_1},{R_3},{R_9},{R_4}\)are irreflexive in nature.

(c)\({R_1},{R_2},{R_5},{R_8},{R_9},{R_{12}},{R_{15}},{R_{16}}\)are symmetric in nature.

(d)\({R_1},{R_2},{R_3},{R_4},{R_5},{R_6},{R_7},{R_8},{R_9},{R_{10}},{R_{11}},{R_{12}},{R_{13}},{R_{14}}\)are antisymmetric in nature.

(e)\({R_3},{R_4}\)are asymmetric in nature.

(f)\({R_1},{R_2},{R_3},{R_4},{R_5},{R_6},{R_7},{R_8},{R_9},{R_{10}},{R_{11}},{R_{12}},{R_{13}},{R_{14}},{R_{16}}\) are transitive.

Step by step solution

01

 Given

(a) The given set\(A = \{ 0,1\} \)

(b)The given set\(A = \{ 0,1\} \)

(c)The given set\(A = \{ 0,1\} \)

(d)The given set\(A = \{ 0,1\} \)

(e)The given set\(A = \{ 0,1\} \)

(f)The given set\(A = \{ 0,1\} \)

02

The Concept of relation

A relation from a set A to a set B is a subset of A×B. Hence, a relation R consists of ordered pairs (a, b), where a∈A and b∈B.

03

Determine the relation (a)

The set\(\{ 0,1\} \)and need to list 16 different relations.

Let us consider\(A = \{ 0,1\} \). Then,\(A \times A = \{ (0,0),(0,1),(1,0),(1,1)\} \). So, the subsets of\(A \times A\)are precisely the relations on\(A\).

Therefore, the relation on\(A = \{ 0,1\} \)are:

\(\begin{array}{l}{R_1} = \phi \\{R_2} = \{ (0,0)\} \\{R_3} = \{ (0,1)\} \\{R_4} = \{ (1,0)\} \\{R_5} = \{ (1,1)\} \\{R_6} = \{ (0,0),(0,1)\} \\{R_7} = \{ (0,0),(1,0)\} \\{R_8} = \{ (0,0),(1,1)\} \\{R_9} = \{ (0,1),(1,0)\} \\{R_{10}} = \{ (0,1),(1,1)\} \\{R_{11}} = \{ (1,0),(1,1)\} \\{R_{12}} = \{ (0,0),(0,1),(1,0)\} \\{R_{13}} = \{ (0,0),(0,1),(1,1)\} \\{R_{14}} = \{ (0,0),(1,0),(1,1)\} \\{R_{15}} = \{ (0,1),(1,0),(1,1)\} \\{R_{16}} = \{ (0,0),(0,1),(1,0),(1,1)\} \end{array}\)

A relation \({\rm{R}}\) on a set \({\rm{A}}\) is reflexive if \((a,a) \in R\) for every element \(a \in A\).

Thus, \({R_8},{R_{13}},{R_{14}},{R_{16}}\) are reflexive in nature.

04

Determine the relation (b)

The set\(\{ 0,1\} \)and need to list 16 different relations.

Let us consider\(A = \{ 0,1\} \). Then,\(A \times A = \{ (0,0),(0,1),(1,0),(1,1)\} \). So, the subsets of\(A \times A\)are precisely the relations on\(A\).

Therefore, the relation on\(A = \{ 0,1\} \)are:

\(\begin{array}{l}{R_1} = \phi \\{R_2} = \{ (0,0)\} \\{R_3} = \{ (0,1)\} \\{R_4} = \{ (1,0)\} \\{R_5} = \{ (1,1)\} \\{R_6} = \{ (0,0),(0,1)\} \\{R_7} = \{ (0,0),(1,0)\} \\{R_8} = \{ (0,0),(1,1)\} \\{R_9} = \{ (0,1),(1,0)\} \\{R_{10}} = \{ (0,1),(1,1)\} \\{R_{11}} = \{ (1,0),(1,1)\} \\{R_{12}} = \{ (0,0),(0,1),(1,0)\} \\{R_{13}} = \{ (0,0),(0,1),(1,1)\} \\{R_{14}} = \{ (0,0),(1,0),(1,1)\} \\{R_{15}} = \{ (0,1),(1,0),(1,1)\} \\{R_{16}} = \{ (0,0),(0,1),(1,0),(1,1)\} \end{array}\)

A relation \({\rm{R}}\) on a set \({\rm{A}}\) is irreflexive if \((a,a) \notin R\) for every element \(a \in A\).

Thus,\({R_1},{R_3},{R_9},{R_4}\) are irreflexive in nature.

05

Determine the relation (c)

The set\(\{ 0,1\} \)and need to list 16 different relations.

Let us consider\(A = \{ 0,1\} \). Then,\(A \times A = \{ (0,0),(0,1),(1,0),(1,1)\} \). So, the subsets of\(A \times A\)are precisely the relations on\(A\).

Therefore, the relation on\(A = \{ 0,1\} \)are:

\(\begin{array}{l}{R_1} = \phi \\{R_2} = \{ (0,0)\} \\{R_3} = \{ (0,1)\} \\{R_4} = \{ (1,0)\} \\{R_5} = \{ (1,1)\} \\{R_6} = \{ (0,0),(0,1)\} \\{R_7} = \{ (0,0),(1,0)\} \\{R_8} = \{ (0,0),(1,1)\} \\{R_9} = \{ (0,1),(1,0)\} \\{R_{10}} = \{ (0,1),(1,1)\} \\{R_{11}} = \{ (1,0),(1,1)\} \\{R_{12}} = \{ (0,0),(0,1),(1,0)\} \\{R_{13}} = \{ (0,0),(0,1),(1,1)\} \\{R_{14}} = \{ (0,0),(1,0),(1,1)\} \\{R_{15}} = \{ (0,1),(1,0),(1,1)\} \\{R_{16}} = \{ (0,0),(0,1),(1,0),(1,1)\} \end{array}\)

A relation \({\rm{R}}\) on a set A is symmetric if \((b,a) \in R\) whenever \((a,b) \in R\).

Thus,\({R_1},{R_2},{R_5},{R_8},{R_9},{R_{12}},{R_{15}},{R_{16}}\) are symmetric in nature.

06

Determine the relation (d)

The set\(\{ 0,1\} \)and need to list 16 different relations.

Let us consider\(A = \{ 0,1\} \). Then,\(A \times A = \{ (0,0),(0,1),(1,0),(1,1)\} \). So, the subsets of\(A \times A\)are precisely the relations on\(A\).

Therefore, the relation on\(A = \{ 0,1\} \)are:

\(\begin{array}{l}{R_1} = \phi \\{R_2} = \{ (0,0)\} \\{R_3} = \{ (0,1)\} \\{R_4} = \{ (1,0)\} \\{R_5} = \{ (1,1)\} \\{R_6} = \{ (0,0),(0,1)\} \\{R_7} = \{ (0,0),(1,0)\} \\{R_8} = \{ (0,0),(1,1)\} \\{R_9} = \{ (0,1),(1,0)\} \\{R_{10}} = \{ (0,1),(1,1)\} \\{R_{11}} = \{ (1,0),(1,1)\} \\{R_{12}} = \{ (0,0),(0,1),(1,0)\} \\{R_{13}} = \{ (0,0),(0,1),(1,1)\} \\{R_{14}} = \{ (0,0),(1,0),(1,1)\} \\{R_{15}} = \{ (0,1),(1,0),(1,1)\} \\{R_{16}} = \{ (0,0),(0,1),(1,0),(1,1)\} \end{array}\)

A relation \({\rm{R}}\)on set \({\rm{A}}\) is antisymmetric if \((b,a) \in R\) whenever \((a,b) \in R\) impliesa \( = {\rm{b}}\)Thus,\({R_1},{R_2},{R_3},{R_4},{R_5},{R_6},{R_7},{R_8},{R_9},{R_{10}},{R_{11}},{R_{12}},{R_{13}},{R_{14}}\) are antisymmetric in nature.

07

Determine the relation (e)

The set\(\{ 0,1\} \)and need to list 16 different relations.

Let us consider\(A = \{ 0,1\} \). Then,\(A \times A = \{ (0,0),(0,1),(1,0),(1,1)\} \). So, the subsets of\(A \times A\)are precisely the relations on\(A\).

Therefore, the relation on\(A = \{ 0,1\} \)are:

\(\begin{array}{l}{R_1} = \phi \\{R_2} = \{ (0,0)\} \\{R_3} = \{ (0,1)\} \\{R_4} = \{ (1,0)\} \\{R_5} = \{ (1,1)\} \\{R_6} = \{ (0,0),(0,1)\} \\{R_7} = \{ (0,0),(1,0)\} \\{R_8} = \{ (0,0),(1,1)\} \\{R_9} = \{ (0,1),(1,0)\} \\{R_{10}} = \{ (0,1),(1,1)\} \\{R_{11}} = \{ (1,0),(1,1)\} \\{R_{12}} = \{ (0,0),(0,1),(1,0)\} \\{R_{13}} = \{ (0,0),(0,1),(1,1)\} \\{R_{14}} = \{ (0,0),(1,0),(1,1)\} \\{R_{15}} = \{ (0,1),(1,0),(1,1)\} \\{R_{16}} = \{ (0,0),(0,1),(1,0),(1,1)\} \end{array}\)

A relation\({\rm{R}}\)on a set\({\rm{A}}\)is asymmetric if\((b,a) \in R\)implies\((a,b) \notin R\)implies\(a = b\).

Thus,\({R_3},{R_4}\) are asymmetric in nature.

08

Determine the relation (f)

The set\(\{ 0,1\} \)and need to list 16 different relations.

Let us consider\(A = \{ 0,1\} \). Then,\(A \times A = \{ (0,0),(0,1),(1,0),(1,1)\} \). So, the subsets of\(A \times A\)are precisely the relations on\(A\).

Therefore, the relation on\(A = \{ 0,1\} \)are:

\(\begin{array}{l}{R_1} = \phi \\{R_2} = \{ (0,0)\} \\{R_3} = \{ (0,1)\} \\{R_4} = \{ (1,0)\} \\{R_5} = \{ (1,1)\} \\{R_6} = \{ (0,0),(0,1)\} \\{R_7} = \{ (0,0),(1,0)\} \\{R_8} = \{ (0,0),(1,1)\} \\{R_9} = \{ (0,1),(1,0)\} \\{R_{10}} = \{ (0,1),(1,1)\} \\{R_{11}} = \{ (1,0),(1,1)\} \\{R_{12}} = \{ (0,0),(0,1),(1,0)\} \\{R_{13}} = \{ (0,0),(0,1),(1,1)\} \\{R_{14}} = \{ (0,0),(1,0),(1,1)\} \\{R_{15}} = \{ (0,1),(1,0),(1,1)\} \\{R_{16}} = \{ (0,0),(0,1),(1,0),(1,1)\} \end{array}\)

A relation \({\rm{R}}\) on a set \({\rm{A}}\) is transitive if \((a,b) \in R\) and \((b,c) \in R\) implies \((a,c) \in R\). Thus, \({R_1},{R_2},{R_3},{R_4},{R_5},{R_6},{R_7},{R_8},{R_9},{R_{10}},{R_{11}},{R_{12}},{R_{13}},{R_{14}},{R_{16}}\) are transitive.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free