Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

(a) To find Relation \({R_1} \cup {R_2}\).

(b) To find Relation \({R_1} \cap {R_2}\).

(c) To find Relation \({R_1} - {R_2}\).

(d) To find Relation\({R_2} - {R_1}\).

(e) To find Relation \({R_1} \oplus {R_2}\).

Short Answer

Expert verified

(a)The solution of Relation\({R_1} \cup {R_2} = \{ (a,b)\mid a - b \equiv 0,3,4,6,8{\rm{ or }}9(\,\bmod \,12)\} \)

(b) The solution of Relation\({R_1} \cap {R_2} = \{ (a,b)\mid a \equiv b(\,\bmod \,12)\} \)

(c) The solution of Relation\({R_1} - {R_2} = \{ (a,b)\mid a - b \equiv 3,6{\rm{ or }}9(\,\bmod \,12)\} \)

(d) The solution of Relation\({R_2} - {R_1} = \{ (a,b)\mid a - b \equiv 4{\rm{ or }}8(\,\bmod \,12)\} \)

(e) The solution of Relation\({R_1} \oplus {R_2} = \{ (a,b)\mid a - b \equiv 3,4,6,8{\rm{ or }}9(\,\bmod \,12)\} \)

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

 Given

(a)\({R_1}\)and \({R_2}\) be the "congruent modulo 3 " and the "congruent modulo 4 " relations, respectively, on the set of integers.

That is, \({R_1} = \{ (a,b)\mid a = b(\,\bmod \,3)\} \) and \({R_2} = \{ (a,b)\mid a = b(\,\bmod \,4)\} \)

(b)\({{\rm{R}}_1}\)and\({{\rm{R}}_2}\)be the "divides" and "is a multiple of" relations on the set of all positive integers, respectively.

That is,\({R_1} = \{ (a,b)\mid \)a divide\(b\} \)and\({R_2} = \{ (a,b)\mid a\)is a multiple of\(b\} \).

(c)\({{\rm{R}}_1}\)and\({{\rm{R}}_2}\)be the "divides" and "is a multiple of" relations on the set of all positive integers, respectively.

That is,\({R_1} = \{ (a,b)\mid \)a divide\(b\} \)and\({R_2} = \{ (a,b)\mid a\)is a multiple of\(b\} \).

(d)\({{\rm{R}}_1}\)and\({{\rm{R}}_2}\)be the "divides" and "is a multiple of" relations on the set of all positive integers, respectively.

That is,\({R_1} = \{ (a,b)\mid \)a divide\(b\} \)and\({R_2} = \{ (a,b)\mid a\)is a multiple of\(b\} \).

(e)\({{\rm{R}}_1}\)and\({{\rm{R}}_2}\)be the "divides" and "is a multiple of" relations on the set of all positive integers, respectively.

That is, \({R_1} = \{ (a,b)\mid \) a divide \(b\} \) and \({R_2} = \{ (a,b)\mid a\) is a multiple of \(b\} \).

02

The Concept of relation

An n-array relation on n sets, is any subset of Cartesian product of the n sets (i.e., a collection ofn-tuples), with the most common one being a binary relation, a collection of order pairs from two sets containing an object from each set. The relation is homogeneous when it is formed with one set.

03

Determine the value of relation (a)

Let us consider the relation\({R_1}\;\& {R_2}\)where,

\({R_1} = \{ (a,b)\mid a \equiv b(\,\bmod \,3)\} \)and\({R_2} = \{ (a,b)\mid a \equiv b(\,\bmod \,4)\} \)

\({R_1} \cup {R_2} = \left\{ {(a,b)\mid (a,b) \in {R_1}} \right.or\;\left. {(a,b) \in {R_2}} \right\}\)

\( = \{ (a,b)\mid a \equiv b(\,\bmod \,3)\;or\;a \equiv b(\,\bmod \,4)\} \)

\( = \{ (a,b)|3|a - b\;or\;4\mid a - b\} \)

\( = \{ (a,b)|3|a - b\)or \(4\mid a - b \Rightarrow a - b\) is a multiple of 3 or 4\(\} \)

\( = \{ (a,b)\mid a - b\)will be divided by 12\(\} \)

\( = \{ (a,b)\mid \)remainder will be \(0,3,4,6,8,9\} \)

\({R_1} \cup {R_2} = \{ (a,b)\mid a - b \equiv 0,3,4,6,8\) or \(9(\,\bmod \,12)\} \)

04

Determine the value of relation (b)

Let us consider the relation\({R_1}\;\& {R_2}\)

\(\begin{array}{c}{R_1} \cap {R_2} = \left\{ {(a,b)\mid (a,b) \in {R_1}{\rm{ and }}(a,b) \in {R_2}} \right\}\\ = \{ (a,b)\mid a \equiv b(\,\bmod \,3){\rm{ and }}a \equiv b(\,\bmod \,4)\} \\ = \{ (a,b)\mid a \equiv b(\,\bmod \,12)\} \end{array}\)

05

Determine the value of relation (c)

Let us consider the relation\({R_1}\;\& {R_2}\)

\(\begin{array}{c}{R_1} - {R_2} = \left\{ {(a,b)\mid (a,b) \in {R_1}{\rm{ and }}(a,b) \notin {R_2}} \right\}\\ = \{ (a,b)\mid a \equiv b(\,\bmod \,3){\rm{ and }}a\not b(\,\bmod \,4)\} \\ = \{ (a,b)|3|a - b{\rm{ and }}4\mid a - b\} \end{array}\)

\( = \)\(\{ (a,b)|3|a - b{\rm{ or }}4\mid a - b \Rightarrow a\)\( - b\)is a multiple of 3 but not of 4\(\} \)

\(\begin{array}{c} = \{ (a,b)\mid a - b{\rm{ will be divided by }}12\} \\ = \{ (a,b)\mid {\rm{ remainder will be }}3,6,9\} \\{R_1} - {R_2} = \{ (a,b)\mid a - b \equiv 3,6{\rm{ or }}9(\,\bmod \,12)\} \end{array}\)

06

Determine the value of relation (d)

Let us consider the relation\({R_1}\;\& {R_2}\)

\({R_2} - {R_1} = \left\{ {(a,b)\mid (a,b) \in {R_2}} \right.\)and\(\left. {(a,b) \notin {R_1}} \right\}\)

\( = \{ (a,b)\mid a \equiv b(\,\bmod \,4)\)and\(a\not b(\,\bmod \,3)\} \)

\( = \{ (a,b)|4|a - b\)and\(3\mid a - b\} \)

\( = \)\(\{ (a,b)|4|a - b{\rm{ or }}3\mid a - b \Rightarrow a\)\( - b\)is a multiple of 4 but not of 3\(\} \)

\( = \{ (a,b)\mid a - b\)will be divided by 12\(\} \)

\( = \{ (a,b)\mid \)remainder will be 4 or 8\(\} \)

\({R_2} - {R_1} = \{ (a,b)\mid a - b \equiv 4{\rm{ or }}8(\,\bmod \,12)\} \)

07

Determine the value of relation (e)

Let us consider the relation\({R_1}\;\& {R_2}\)

\({R_1} \oplus {R_2} = \left( {{R_1} \cup {R_2}} \right) - \left( {{R_1} \cap {R_2}} \right)\)

\({R_1} \cup {R_2} = \{ (a,b)\mid a - b \equiv 0,3,4,6,8\)or\(9(\,\bmod \,12)\} \)and

\({R_1} \cap {R_2} = \{ (a,b)\mid a \equiv b(\,\bmod \,12)\} \)\( = \{ (a,b)\mid a - b \equiv 0(\,\bmod \,12)\} \)

\({R_1} \cap {R_2} = \{ (a,b)\mid a \equiv b(\,\bmod \,12)\} \)\( = \{ (a,b)\mid a - b \equiv 0(\,\bmod \,12)\} \)

Thus,

\(\begin{array}{c}\left( {{R_1} \cup {R_2}} \right) - \left( {{R_1} \cap {R_2}} \right) = \{ (a,b)\mid a - b \equiv 3,4,6,8{\rm{ or }}9(\,\bmod \,12)\} \\{R_1} \oplus {R_2} = \{ (a,b)\mid a - b \equiv 3,4,6,8{\rm{ or }}9(\,\bmod \,12)\} \end{array}\)

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free