Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

To determine congruence class \({(4)_8}\), where \(m\) is \(8\).

Short Answer

Expert verified

The congruence class of \({(4)_8}\) is \(\{ \ldots , - 20, - 12, - 4,4,12,20,28,36, \ldots \} \).

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Given data

Given data is \(m = 8\).

02

Formula used of modulo

By the definition of modulo,

\(\begin{array}{c}{(4)_m} = \{ x \in Z\mid 4 \equiv x(\,\bmod \,m)\} \\ = \{ 4 + km:k \in Z\} \\ = \{ \ldots ,4 - 3m,4 - 2m,4 - m,4,4 + m,4 + 2m,4 + 3m,4 + 4m, \ldots \} \end{array}\).

03

Find congruence class

If \(m = 8\), then \({(4)_8}\) is,

\(\begin{array}{c}{(4)_8} = \{ \ldots ,4 - 3m,4 - 2m,4 - m,4,4 + m,4 + 2m,4 + 3m,4 + 4m, \ldots \} \\ = \{ \ldots ,4 - 3(8),4 - 2(8),4 - (8),4,4 + (8),4 + 2(8),4 + 3(8),4 + 4(8) \ldots \} \\ = \{ \ldots ,4 - 24,4 - 16,4 - 8,4,4 + 8,4 + 16,4 + 24,4 + 32, \ldots \} \\ = \{ \ldots , - 20, - 12, - 4,4,12,20,28,36, \ldots \} \end{array}\)

Hence, the congruence class of \({(4)_8}\) is \(\{ \ldots , - 20, - 12, - 4,4,12,20,28,36, \ldots \} \).

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free