Chapter 9: Q36E (page 582)
Exercises 34–37 deal with these relations on the set of real numbers:
\({R_1} = \left\{ {\left( {a,\;b} \right) \in {R^2}|a > b} \right\},\)the “greater than” relation,
\({R_2} = \left\{ {\left( {a,\;b} \right) \in {R^2}|a \ge b} \right\},\)the “greater than or equal to” relation,
\({R_3} = \left\{ {\left( {a,\;b} \right) \in {R^2}|a < b} \right\},\)the “less than” relation,
\({R_4} = \left\{ {\left( {a,\;b} \right) \in {R^2}|a \le b} \right\},\)the “less than or equal to” relation,
\({R_5} = \left\{ {\left( {a,\;b} \right) \in {R^2}|a = b} \right\},\)the “equal to” relation,
\({R_6} = \left\{ {\left( {a,\;b} \right) \in {R^2}|a \ne b} \right\},\)the “unequal to” relation.
36. Find
(a) \({R_1}^\circ {R_1}\).
(b) \({R_1}^\circ {R_2}\).
(c) \({R_1}^\circ {R_3}\).
(d) \({R_1}^\circ {R_4}\).
(e) \({R_1}^\circ {R_5}\).
(f) \({R_1}^\circ {R_6}\).
(g) \({R_2}^\circ {R_3}\).
(h) \({R_3}^\circ {R_3}\).
(a)The solution of Relation\({R_1} \circ {R_1} = {R_1}.\)
(b) The solution of Relation\({R_1} \circ {R_2} = {R_1}\)
(c) The solution of Relation\({R_1} \circ {R_3} = {\mathbb{R}^2}\)
(d) The solution of Relation\({R_1}^\circ {R_4} = {\mathbb{R}^2}\)
(e) The solution of Relation\({R_1}^\circ {R_5} = {R_1}\)
(f) The solution of Relation\({R_1}^\circ {R_6} = {\mathbb{R}^2}\)
(g) The solution of Relation\({R_2}^\circ {R_3} = {\mathbb{R}^2}\)
(h) The solution of Relation \({R_3}^\circ {R_3} = {R_3}\)
Step by step solution
01
Given
The given for all parts are as follows:
\(\begin{array}{l}{R_1} = \left\{ {(a,b) \in {R^2}/a > b} \right\}\\{R_2} = \left\{ {(a,b) \in {R^2}/a \ge b} \right\}\\{R_3} = \left\{ {(a,b) \in {R^2}/a < b} \right\},\\{R_4} = \left\{ {(a,b) \in {R^2}/a \le b} \right\}\\{R_5} = \left\{ {(a,b) \in {R^2}/a = b} \right\},\\{R_6} = \left\{ {(a,b) \in {R^2}/a \ne b} \right\}\end{array}\)
02
The Concept of relation
An n-array relation on n sets, is any subset of Cartesian product of the n sets (i.e., a collection ofn-tuples), with the most common one being a binary relation, a collection of order pairs from two sets containing an object from each set. The relation is homogeneous when it is formed with one set.
03
(a) Determine the value of relation
For every\((a,b) \in R\)and\((b,c) \in S\), the corresponding element\((a,c)\)belongs to the composition.
\(\begin{array}{c}{R_1}^\circ {R_1} = \left\{ {(a,b)/(a,c) \in {R_1}^\circ {R_1} \Rightarrow b{\rm{ such that }}(a,b) \in {R_1}{\rm{ and }}(b,c) \in {R_1}} \right\}\\ = \left\{ {(a,b)/(a,c) \in {R_1}^\circ {R_1} \Rightarrow a > b,b > c \Leftrightarrow a > c} \right\}\\ = \left\{ {(a,b)/(a,c) \in {R_1}^\circ {R_1} \Rightarrow (a,c) \in {R_1}} \right\}\\{R_1}^\circ {R_1} = {R_1}\end{array}\)
04
(b) Determine the value of relation
For every\((a,b) \in R\)and\((b,c) \in S\), the corresponding element\((a,c)\)belongs to the composition.
\(\begin{array}{c}{R_1}^\circ {R_2} = \left\{ {(a,b)/(a,c) \in {R_1}^\circ {R_2} \Rightarrow b{\rm{ such that }}(a,b) \in {R_1}{\rm{ and }}(b,c) \in {R_2}} \right\}\\ = \left\{ {(a,b)/(a,c) \in {R_1}^\circ {R_2} \Rightarrow a > b,b \ge c \Leftrightarrow a > c} \right\}\\ = \left\{ {(a,b)/(a,c) \in {R_1}^\circ {R_2} \Rightarrow (a,c) \in {R_1}} \right\}\\{R_1}^\circ {R_2} = {R_1}\end{array}\)
05
(c) Determine the value of relation
For every\((a,b) \in R\)and\((b,c) \in S\), the corresponding element\((a,c)\)belongs to the composition.
\(\begin{array}{c}{R_1}^\circ {R_3} = \left\{ {(a,b)/(a,c) \in {R_1}^\circ {R_3} \Rightarrow b{\rm{ such that }}(a,b) \in {R_3}{\rm{ and }}(b,c) \in {R_1}} \right\}\\ = \left\{ {(a,b)/(a,c) \in {R_1}^\circ {R_3} \Rightarrow a < b,b > c \Leftrightarrow b{\rm{ is high }}} \right\}\\ = \left\{ {(a,b)/(a,c) \in {R_1}^\circ {R_3} \Rightarrow (a,c) \in {\mathbb{R}^2}} \right\}\\{R_1}^\circ {R_3} = {\mathbb{R}^2}\end{array}\)
06
(d) Determine the value of relation
For every\((a,b) \in R\)and\((b,c) \in S\), the corresponding element\((a,c)\)belongs to the composition.
\(\begin{array}{c}{R_1}^\circ {R_4} = \left\{ {(a,b)/(a,c) \in {R_1}^\circ {R_4} \Rightarrow b{\rm{ such that }}(a,b) \in {R_1}{\rm{ and }}(b,c) \in {R_4}} \right\}\\ = \left\{ {(a,b)/(a,c) \in {R_1}^\circ {R_4} \Rightarrow a > b,b \le c \Leftrightarrow b{\rm{ is less }}} \right\}\\ = \left\{ {(a,b)/(a,c) \in {R_1}^\circ {R_3} \Rightarrow (a,c) \in {\mathbb{R}^2}} \right\}\end{array}\)
07
(e) Determine the value of relation
For every\((a,b) \in R\)and\((b,c) \in S\), the corresponding element\((a,c)\)belongs to the composition.
\(\begin{array}{c}{R_1}^\circ {R_5} = \left\{ {(a,b)/(a,c) \in {R_1}^\circ {R_5} \Rightarrow b{\rm{ such that }}(a,b) \in {R_1}{\rm{ and }}(b,c) \in {R_5}} \right\}\\ = \left\{ {(a,b)/(a,c) \in {R_1}^\circ {R_5} \Rightarrow a > b,b = c \Leftrightarrow a > c} \right\}\\ = \left\{ {(a,b)/(a,c) \in {R_1}^\circ {R_5} \Rightarrow (a,c) \in {R_1}} \right\}\\{R_1}^\circ {R_5} = {R_1}\end{array}\)
08
(f) Determine the value of relation
For every\((a,b) \in R\)and\((b,c) \in S\), the corresponding element ( a, c) belongs to the composition.
\(\begin{array}{c}{R_1}^\circ {R_6} = \left\{ {(a,b)/(a,c) \in {R_1}^\circ {R_6} \Rightarrow b{\rm{ such that }}(a,b) \in {R_1}{\rm{ and }}(b,c) \in {R_6}} \right\}\\ = \left\{ {(a,b)/(a,c) \in {R_1}^\circ {R_6} \Rightarrow a > b,b \ne c \Leftrightarrow b{\rm{ is less }}} \right\}\\ = \left\{ {(a,b)/(a,c) \in {R_1}^\circ {R_6} \Rightarrow (a,c) \in {\mathbb{R}^2}} \right\}\\{R_1}^\circ {R_6} = {\mathbb{R}^2}\end{array}\)
09
(g) Determine the value of relation
For every\((a,b) \in R\)and\((b,c) \in S\), the corresponding element\((a,c)\)belongs to the composition.
\(\begin{array}{c}{R_2}^\circ {R_3} = \left\{ {(a,b)/(a,c) \in {R_2}^\circ {R_3} \Rightarrow b{\rm{ such that }}(a,b) \in {R_2}{\rm{ and }}(b,c) \in {R_3}} \right\}\\ = \left\{ {(a,b)/(a,c) \in {R_2}^\circ {R_3} \Rightarrow a \ge b,b < c \Leftrightarrow b{\rm{ is less }}} \right\}\\ = \left\{ {(a,b)/(a,c) \in {R_2}^\circ {R_3} \Rightarrow (a,c) \in {\mathbb{R}^2}} \right\}\\{R_2}^\circ {R_3} = {\mathbb{R}^2}\end{array}\)
10
(h) Determine the value of relation
The solution of Relation
For every \((a,b) \in R\) and \((b,c) \in S\), the corresponding element \((a,c)\) belongs to the composition.
\(\begin{array}{c}{R_3}^\circ {R_3} = \left\{ {(a,b)/(a,c) \in {R_3}^\circ {R_3} \Rightarrow b{\rm{ such that }}(a,b) \in {R_3}{\rm{ and }}(b,c) \in {R_3}} \right\}\\ = \left\{ {(a,b)/(a,c) \in {R_3}^\circ {R_3} \Rightarrow a < b,b < c \Leftrightarrow a < c} \right\}\\ = \left\{ {(a,b)/(a,c) \in {R_2}^\circ {R_3} \Rightarrow (a,c) \in {R_3}} \right\}\\{R_3}^\circ {R_3} = {R_3}\end{array}\)
Unlock Step-by-Step Solutions & Ace Your Exams!
-
Full Textbook Solutions
Get detailed explanations and key concepts
-
Unlimited Al creation
Al flashcards, explanations, exams and more...
-
Ads-free access
To over 500 millions flashcards
-
Money-back guarantee
We refund you if you fail your exam.
Over 30 million students worldwide already upgrade their
learning with Vaia!