A relation\(R\)on a set\(A\)is irreflexive if\((a,a) \notin R\)for every\(a \in A\).
A relation\(R\)on a set\(A\)is reflexive if\((a,a) \in R\)for every element\(a \in A\).
A relation\(R\)on a set\(A\)is symmetric if\((b,a) \in R\)whenever\((a,b) \in A\).
A relation\(R\)on a set\(A\)is anti-symmetric if\((b,a) \in R\)and\((a,b) \in R\)implies\({\rm{a}} = {\rm{b}}\).
A relation\(R\)on a set\(A\)is transitive if\((a,b) \in R\)and\((b,c) \in R\)implies\((a,c) \in R\).
The relation is reflexive if there is a loop at each vertex; irreflexive if there are no loops at all;symmetric if edges appear only in anti-parallel pairs (edges from one vertex to a second vertex and from thesecond back to the first); anti-symmetric if there is no pair of antiparallel edges; and transitive if all pathsof length 2 (a pair of edges \((x,y)\) and \((y,z))\) are accompanied by the corresponds to the path of length 1 (theedge \((x,z))\).